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Abstract

Machine Learning (ML) is a driving force of innovation and a key technology of
the future. At the same time, Quantum Computing (QC) is emerging as a tech-
nology that holds the potential of asymptotic speedups and efficient computation
in exponentially large spaces. It also enables faster optimization, which lies at the
core of ML, leading to ongoing efforts of utilizing QC to perform ML. However, QC
is still in its infancy, and applications of quantum-based optimization and ML are
severly limited by imperfect hardware. This thesis explores strategies of using QC
to enhance ML on the one hand, and using classical optimization to enhance QC
in its current restricted state on the other. To this end, a feature selection method
based on a QuBo embedding is discussed, which is deployed on a quantum an-
nealer. For Support Vector Machines, a classical ML model, two embeddings on
quantum computers are shown, using both paradigms of adiabatic QC and gate-
based QC. It is shown how evolutionary optimization can be used to jointly learn
the structure and parameters of quantum circuits. Further, it is shown that low
precision of QuBo weights can lead to loss of performance on quantum anneal-
ers, and strategies to mitigate this effect are presented, leading to higher-quality
optimization results. Taken together, this thesis broadens the scope of quantum-
classical computation by both adding to the toolkit of quantum-enhanced ML
methods, and by improving the quality of near-term QC itself. Finally, this thesis
demonstrates in a range of practical applications how quantum-classical optimiza-
tion can be applied in a resource-aware fashion, employing various techniques to
utilize near-term QC effectively.
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Part 1.

Fundamentals






1. Introduction

75"N03 PTIMIZATION LIES AT THE CORE of Machine Learning (ML), which has been a driv-

ing force of innovation over the past few decades. ML models are used to learn
TNZA? from example data with the goal of performing tasks usually associated with
(human) intelligence: Object recognition in images, classification and regression of tab-
ular data, time series analysis and forecasting, language translation and generation, and
much more is today not only feasible, but widely available and readily applicable to a
plethora of application areas. Consequently, ML has attained a firm place in the public
conscience as a key technology of the future.

All models have in common that they are trained through some type of optimization rou-
tine that minimizes a loss function quantifying the model’s performance on previously
unobserved data. Many of the optimization problems occurring in ML are very challeng-
ing, particularly because they are high-dimensional, involving millions or even billions of
parameters trained on millions of data points. For most deep learning models, Stochastic
Gradient Descent (SGD) is the optimization method of choice, where the gradient of the
loss function w.r.t. small batches of data points is computed using backpropagation [9].
Obstacles like the vanishing gradient problem [10] have been overcome using carefully
designed activation functions [11], and special-purpose hardware that massively paral-
lelizes linear algebra operations has drastically increased the scale at which deep learning
can be applied, most recently enabling large language models such as GPT and its succes-
sors [12]. Training such massive models is, however, becoming increasingly costly and
inefficient, requiring ever more time and compute resources to traverse the exponentially
growing search space of parameters, and contributing to climate change along the way
[13, 14]. Moreover, gradient methods are generally bound to find only local optima, and
when the solution candidate space of a problem scales exponentially with the problem
size, finding the exact solution quickly becomes infeasible. For many loss functions, a
gradient cannot be computed or does not exist at all, e.g., when dealing with discrete
search spaces.

In a parallel development, Quantum Computing (QC) is slowly evolving from a purely the-
oretical discipline into a practically applicable technology. At its heart lies the prospect
of asymptotic speed-ups that enable efficient optimization and bigger, richer computa-
tions in short time spans, for which classical (that is, non-quantum) methods would need
centuries or more. Using quantum circuits, algorithms can be built and executed, some
of which famously asymptotically outperform classical algorithms: Probably the most
famous example is Shor’s Algorithm, which solves the problem of prime factorization
of a natural number n € N using O((logn)?) gates [15], posing a (theoretical) threat
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to cryptography, which largely relies on the hardness of decomposing large prime num-
bers. Another example is Grover Search, which can be used to search lists of length
n in O(y/n) time [16]. Quantum annealers have become a novel target platform for
quantum-accelerated optimization [17]. Drivers of this development are improvements in
QC hardware, fueled by the continuous improvement of superconducting technology like
Josephson junctions [18] and the transmon qubit [19]. Companies like IBM and D-Wave
make their quantum hardware and learning resources available to the public, making QC
accessible and thus fostering new ideas and research.

The central concept of QC is replacing bits used in classical computing with qubits (con-
traction of “quantum bits”), which, just like normal bits, have two basis states, |0) and
|1). However, they can be in superposition, which means they assume one or the other
state with a certain probability when being measured. Therefore, measuring an isolated
qubit can be thought of as taking samples from a Bernoulli-distributed random variable.
Groups of qubits can be entangled, meaning that their marginal measurement probabil-
ities are not mutually independent. The joint states of such systems of qubits can be
expressed by exponentially large complex-valued vectors. However, these states can be
manipulated through physical operations without the need to instatiate the vectors in any
sort of memory. The central question of QC is how to exploit this implicit manipulation
of exponentially large state spaces in order to do something meaningful.

There are two major paradigms that QC research follows: Gate-based Quantum Com-
puting (GQC) and Adiabatic Quantum Computing (AQC). GQC models quantum state
manipulations as sequences of simple operations on single qubits or pairs of qubits. In
analogy to logical circuits, these sequences are called quantum circuits, and the individ-
ual operations gates, some of which take real-valued parameters. If a set of gates can be
proven to be universal, every possible quantum state can be constructed from a (possibly
very long) sequence of gates exclusively from this set, similar to the instruction set of
a classical processor. The resulting quantum state can be measured, yielding an empir-
ical distribution over binary vectors, which in turn can be interpreted according to the
application at hand.

The second paradigm, AQC, follows a different approach by encoding optimization prob-
lems into time-dependent Hamiltonian operators, which can be thought of as functions
assigning an energy to every quantum state. Their ground state (i.e., the quantum state of
lowest energy) encodes the optimal solution. Special-purpose hardware has been devel-
oped since the 2000s that performs Quantum Annealing (QA), a hybrid form of AQC that
can be executed on the imperfect quantum hardware that exists today. Here, problems are
encoded into a parametrized Hamiltonian (usually of an Ising model), and a quantum state
prepared in the known ground state of a simple Hamiltonian slowly evolves toward the
target Hamiltonian. If done slowly enough, the system remains in its ground state, and
the optimal solution of the target problem can simply be measured at the end. The class
of problems that can be solved this way is called QuBo, which is NP-hard and has a wide
range of applications across many disciplines, ranging from its origins in economics to re-
source allocation and logistics, satisfiability and graph problems (see Section 2.2.3).
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Figure 1.1.: Intersections of the topics of ML, Optimization, and QC, and where they are discussed
in this thesis.

Despite its favorable theoretical properties and the highly promising developments over
the last decades, quantum hardware has not yet reached a state where it can be widely
applied to large-scale problems in practice and yield state-of-the-art results that surpass
high-performance classical computing devices. The current state of quantum hardware
has been dubbed the Noisy Intermediate-Scale Quantum (NISQ) era, as both the number
of usable qubits as well as the number of gates that can be applied in a quantum circuit
are severely limited due to effects such as decoherence and gate noise [20]. Still, in its
ambitious roadmap, IBM expects fully error-corrected quantum computers with several
thousand qubits from 2030 onwards!. In this light, new research directions have emerged,
attempting to make efficient use of the currently available quantum hardware with the
aim of supplementing or completely replacing classical methods found throughout com-
puter science, expecting them to one day be used on a large scale on noise-free quantum
computers.

As a notable example of such an emerging research direction, Quantum Machine Learn-
ing (QML) attempts to replace models, algorithms, and routines used in ML with new
quantum counterparts [21]. The approaches found in literature are largely heuristic. For
instance, parametrized quantum circuits that structurally imitate Artificial Neural Net-
works (ANNs) are trained by encoding input data into the gate parameters, measuring
the resulting state, interpreting it as a prediction (e.g., a one-hot encoding), and com-
puting parameter updates based on a loss value. However, such models have their own
challenges in training [22, 23], and a clear advantage over classical ML has not yet been

"https://www.ibm.com/roadmaps/quantum/
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observed [24]. In fact, QC constitutes a novel computing paradigm whose true native
use case may yet be discovered. As there is “no free lunch” in supervised learning [25],
it is easily conceivable that there are (learning) tasks that are perfectly suited for quan-
tum models. Clearly, different applications require different hardware architectures: Ap-
plications with very high data throughput may benefit from Field-Programmable Gate
Arrays (FPGAs), which achieve much higher clock speeds and thus can handle real-time
requirements [26, 27]. Other application areas, such as the “Internet of Things”, have very
strict limits on size and power consumption, for which microcontrollers are a great op-
tion [28]. Therefore, expanding our collection of available quantum algorithms and their
applications is a promising endeavor. At the same time, paving the path out of the Noisy
Intermediate-Scale Quantum (NISQ) era—or, at least, mitigating its current limitations—is
another necessary research direction: By allowing for more effective exploration of QC’s
current capabilities and, consequently, faster development of future-proof QC algorithms,
applying our vast toolbox of theoretical knowledge and classical algorithms to try and im-
prove the efficacy of today’s quantum hardware facilitates research both in the short and
the long term.

This thesis takes a step in both directions by exploring some of the various ways in which
(i) QC in its NISQ state can supplement ML tasks, and (ii) classical algorithms can sup-
plement current NISQ-era quantum computers. In this way, we add to a new toolbox
of methods that can be used in quantum-enhanced ML settings. In particular, we show
how QA can be used to perform Feature Selection, and how Support Vector Machines can
be trained and deployed using both QC paradigms. Conversely, we improve upon the
usability of quantum hardware in two ways: We use Evolutionary Algorithms (EAs) to
construct quantum circuits from scratch without any pre-defined ansatz. Moreover, we
show that the solution quality of QA is dependent on the dynamic range of the QuBo prob-
lem’s parameters, and devise strategies to reduce it, yielding consistently better results
on QA hardware. In addition, this thesis showcases a number of applications combining
ML, Optimization, and QC, highlighting various methods of approaching practical prob-
lems while maintaining feasibility on NISQ devices. The following section gives a more
detailed overview of how the remainder of this thesis is structured.

Outline

This thesis is split into four parts: Part I contains the introduction and background chap-
ters. Part II focuses on how QC can be used to supplement ML methods, while Part III
covers the opposite direction, answering the question of how classical methods can sup-
port quantum computing technologies. Finally, Part IV presents three applications that
combine Optimization, ML, and QC, illustrating their interplay more concretely, before
this thesis concludes with a discussion about the future developments of QC and its possi-
ble implications for Optimization and ML. Figure 1.1 shows at a glance how each chapter
falls into the intersections of the three pillar topics. The following paragraphs give a more
detailed overview of the contents of each part.



1.1. Outline

Part 1 introduces the concepts of QC, Optimization, and ML. Chapter 1 gives the mo-
tivation for studying the interplay of these three topics, highlighting the current chal-
lenges and prospects of QC. Chapter 2 lays the foundation for all the following chapters
by explaining the various concepts needed to follow this thesis. After establishing some
notational conventions and mathematical tools in Section 2.1, the topics of optimization
(Section 2.2), ML (Section 2.3), and QC (Section 2.4) are presented from the ground up.
In Section 2.3, particular focus is placed on Feature Selection (Section 2.3.1), an impor-
tant pre-processing step in ML pipelines, as well as the Support Vector Machine model
(Section 2.3.2). These form the basis of QC methods presented in Chapters 3 and 4, re-
spectively.

Part Il dives into the core question of this thesis, presenting two approaches to im-
plementing QC into ML methods: Chapter 3 explains how Feature Selection (FS) can be
formulated as a QuBo problem, which is then solved on a quantum annealer. In a series of
experiments, we show that this novel quantum-enhanced FS strategy called QuBo-based
Feature Selection (QFS) produces useful feature subsets and is competitive with other FS
methods. In addition, we prove based on the energy function of the Quso problem that
QFS is capable of finding any desired number £ of features. Chapter 4 focuses on the SVM
as a time-tested ML classification model with strong theoretical foundations. We show in
Section 4.1 how support vectors can be found with a quantum annealer, using a slightly
simplified formulation of the SVM optimization problem. In Section 4.2, we show how a
pre-trained SVM can be deployed as a quantum circuit, utilizing a gate-based quantum
computer as a sampler to compute the model prediction.

Part Il takes the mirror-image approach of Part II by answering the question of how
classical optimization methods can help quantum computers in their current imperfect
state. To this end, Chapter 5 demonstrates how Evolutionary Optimization can be used
to construct quantum circuits given a target Hamiltonian. This optimization strategy is
not gradient-based and is therefore able to optimize over the discrete set of possible quan-
tum circuits. In contrast to fixed ansétze, which are typically heuristic and overly general,
we show that using a “bottom-up” approach, i.e., constructing circuits from scratch, leads
to more compact circuit designs. Finally, Chapter 6 again focuses on QA, demonstrat-
ing the fundamental connection between the dynamic range of QuUBO parameters and
the resulting solution quality obtained from quantum annealers: A high dynamic range
leads to an increased proportion of non-optimal solutions in the solution sample set. To
mitigate this effect, we develop an algorithm to reduce the dynamic range while preserv-
ing the optimal solution of the QuBo problem through theoretical bounds on the optimal
energy.

Part IV highlights three real-world applications that combine Optimization and ML
with QC: In Chapter 7, the problem of efficient placement of light sources on a given
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3D map is solved using a combination of QA and classical constraint optimization tech-
niques, demonstrating how QC can be used as a component within a larger optimization
algorithm. Chapter 8 uses the game of Sudoku as a toy example of an NP-hard optimiza-
tion problem that is solved using QA: The focus lies on the technique of clamping, which
allows for a substantial subset of binary variables to be fixed to constant values and re-
moved from the optimization problem entirely, reducing the overall problem size. This
technique illustrates how optimization problems can be formulated in a way that caters
to the limited NISQ annealers available today. The final chapter of this part, Chapter 9,
tackles the problem of stability prediction in milling processes. This regression problem,
which is of great importance for obtaining high-quality results in machining applications,
is solved using a modified version of the GQC-based SVM model presented in Section 4.2,
fed with custom features derived from a real-world data set of empirical milling stability
data. Finally, Chapter 10 concludes this thesis and gives an outlook on possible develop-
ments in QC and its interplay with Optimization and ML in the future.

Overview of Publications

This thesis covers a number of scientific papers that were written between 2019 and 2024.
Parts of these papers were funded by the Federal Ministry of Education and Research of
Germany (BMBF), initially as part of the Competence Center for Machine Learning Rhine-
Ruhr (ML2R), later as part of the Lamarr Institute for Machine Learning and Artificial
Intelligence.

Peer-Reviewed Publications

[1] Sascha Miicke, Thore Gerlach and Nico Piatkowski. “Optimum-Preserving QUBO
Parameter Compression”. In: Quantum Machine Intelligence 7 (2025).
DOI: 10.1007/s42484-024-00219-3.

[2] Nico Piatkowski and Sascha Miicke. “Real-Part Quantum Support Vector Machines”.
In: Proceedings of Machine Learning and Knowledge Discovery in Databases. Vol.
14948. Springer, 2024. pp. 144-160. DOI: 10.1007/978-3-031-70371-3_9.

[3] Sascha Miicke. “A Simple QUBO Formulation of Sudoku”. In: Companion Pro-
ceedings of the Genetic and Evolutionary Computation Conference. ACM, 2024, pp.
1958-1962. por: 10.1145/3638530.3664106.

[4] Sascha Miicke and Thore Gerlach. “Efficient Light Source Placement using Quan-
tum Computing”. In: Proceedings of the Conference on “Lernen, Wissen, Daten, Anal-
ysen”. Vol. 3630. 2023, pp. 478—491.

[5] Sascha Micke, Raoul Heese, Sabine Miiller, Moritz Wolter and Nico Piatkowski.
“Feature Selection on Quantum Computers”. In: Quantum Machine Intelligence 5
(2023). por: 10.1007/S42484-023-00099-Z.
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[6] LukasFranken, Bogdan Georgiev, Sascha Miicke, Moritz Wolter, Raoul Heese, Chris-
tian Bauckhage and Nico Piatkowski. “Quantum Circuit Evolution on NISQ De-
vices”. In: Proceedings of the IEEE Congress on Evolutionary Computation, 2022, pp.
1-8. por: 10.1109/CEC55065.2022.9870269.

[7] Sascha Miicke, Nico Piatkowski and Katharina Morik. “Learning Bit by Bit: Ex-
tracting the Essence of Machine Learning”. In: Proceedings of the Conference on
“Lernen, Wissen, Daten, Analysen”. Vol. 2454. 2019, pp. 144-155.

Non-Peer-Reviewed Publications

[8] Sascha Miicke, Felix Finkeldey, Nico Piatkowski, Tobias Siebrecht, Petra Wiederkehr.
“Predicting Machining Stability with a Quantum Regression Model”. 2024. arXiv:
2412.04048 [quant-ph].

Author Attribution

The publications this thesis builds upon have been developed together with numerous
co-authors. The following gives a detailed breakdown of every author’s contributions.
Authors are enumerated in the order of their appearance on the author list of the publi-
cation in question. The author of this thesis is highlighted in boldface.

For [1], author 1 developed the concept of QUBO parameter compression, devised and
proved all theoretical insights, implemented and conducted all experiments and created
their result plots, except for those investigating the DR ratio, state ordering, and unique
parameter ratio on random QUBO instances, and wrote the majority of the article. Authors
1 and 2 jointly developed and formalized the heuristic compression strategies, whose
Python implementation was contributed by author 2. Author 2 conducted experiments
on random QUBoO instances and plotted their results. They further wrote sections about
the heuristic compression strategies and discussion of experimental results. Author 3
provided additional advice and did proof-reading.

For [2], authors 1 and 2 jointly developed the concept of the RQSVM model. Author 1
formalized the theoretical insights and wrote most of the paper. Author 2 implemented
the model along with a custom quantum simulator, conducted the simulated experiments,
created their result plots, and wrote sections about the experiments in the paper. Author
1 conducted and documented experiments on real quantum hardware.

For [4], author 1 developed the idea of the TORCHPLACEMENT problem, formalized it,
devised the basic QuBo formulation, established the connection to SETCOVER, and wrote
the majority of the paper. They also implemented the random generation and graphical
representation of height maps. Authors 1 and 2 jointly implemented and conducted the
experiments. Author 2 had the idea to use ADMM, contributed a Python implementation,
and wrote the corresponding paper sections.



1.2.2.

1. Introduction

For [5], author 1 developed the idea of using mutual information to perform feature se-
lection using QuBo. He devised the Quo formulation, the method to control the feature
subset size and its correctness proof, and the final QFS algorithm. Further, he designed
and conducted all experiments and wrote the majority of the paper. Author 2 assisted in
experiment design and evaluation, providing result plots for all experiments. Authors 2,
3, 4, and 5 provided valuable feedback in discussions, helping to design the experiments
and structure the paper. Authors 2 and 5, in particular, gave useful advice for formalizing
the proof. Author 5 contributed the formal description of mutual information on discrete
random variables. All authors helped in proof-reading.

For [6], authors 1 and 2 had the initial idea of training quantum circuits to minimize the
expectation w.r.t. some Hamiltonian and wrote sections about quantum computing and
Hamiltonians in the paper. Author 3 determined the focus of this paper by introducing
the idea of using evolutionary optimization for circuit learning. He defined the mutation
operator and implemented the optimization routine in Python. Further, he formalized the
the evolutionary algorithm and wrote the corresponding sections in the paper. Experi-
ments were designed and implemented jointly by authors 1 and 3. Author 3 implemented
software tools for the evaluation of experimental results, providing data for Fig. 5.5. Au-
thors 3 and 7 created the plot in Fig. 5.8, all other plots were created by authors 1 and 5.
All authors contributed ideas about the experiment design and structure of the paper in
discussions, and did proof-reading of the paper. Author 6 provided supervision.

For [7], author 1 devised the strategies to encode SVM and MRF in QuBo, wrote the
paper, and created all figures. Author 2 contributed ideas and helped structure the paper.
Author 3 provided proof-reading and supervision.

For [8], author 1 had the initial idea of using quantum computing in a machining con-
text, which was developed further in discussions with authors 2, 3, 4 and 5. The data
was provided by authors 2, 4, and 5. The experiments were designed, implemented and
conducted by author 1, who also created the result plots and wrote most of the paper.
Author 2 contributed background sections about machining, stability in milling processes,
and the data collection process. Authors 2 and 5 did proof-reading, and author 5 provided
supervision.

Source Attribution

A detailed breakdown of which parts of the aforementioned publications were used is
given in a gray box at the beginning of each chapter. Image sources are stated in the
caption. Sources of definitions, theorems, and propositions are stated in their titles. If no
source is given, the image, text or equation was created by the author of this thesis.
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2.

2.1.

Background

This chapter establishes some notation in Section 2.1 that is going to be used throughout
this thesis, and introduces basic concepts that the remaining chapters build upon. In
particular, it introduces optimization (Section 2.2) and ML (Section 2.3), focusing on the
specific problems and models that are relevant for later chapters, and gives an overview of
quantum computing in its two main paradigms of GQC (quantum circuits, Section 2.4.1)
and AQC (including quantum annealing, Section 2.4.3). Further, the connection between
the QuBo problem (see Section 2.2.3) and its physical counterpart, the Ising model, is
established, giving rise to the concept of AQC and serving as a bridge between classical
and quantum optimization.

Notational Conventions

Throughout this thesis we adhere to a series of notational conventions, which are de-
scribed briefly in this section.

The indicator function 1{ P} is defined as

1 if Pis true

1{P} = { (2.1)

0 otherwise,

for any boolean expression P. The powerset of a set X is denoted by B (X).

Generally, vectors are represented by lowercase boldface letters, matrices by uppercase
boldface letters. Their respective elements are written using their non-boldface counter-
parts with subscript indices. To give an example: Let A denote an arbitrary matrix of size
n X m, and a a vector of size n, then a; is the i-th element of a and A;; the element of A
in row % and column j. A special matrix is I, the n X n identity matrix. The subscript
may be omitted if the size is clear from context.

We allow for more advanced indexing through subvectors:

Definition 2.1 (Subvectors). Letn € N, I C {1,...,n} an ordered set with |I| = m and
elements Iy, ..., Iy, anda € K™ for some field K. Then a; is a subvector of a defined as

a;j = (a117 e ,CL[m)T.

By default, all vectors are column vectors, and superscript T denotes transposition for
both vectors and matrices, e.g., aT and AT. If not specified otherwise, simple addition
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2. Background

and subtraction of (equally-sized) vectors and matrices is element-wise. The notation
©® denotes the Hadamard product, i.e., element-wise multiplication. Addition and sub-
traction of scalars with vectors and matrices is “broadcast” to the size of the latter: The
notation A + ¢ (or c+ A) means that the scalar c is added to every element of A, yielding
a matrix of the same shape as A.

Another operation that we use frequently throughout this thesis is the Kronecker product,
which is commonly found in the context of quantum computing.

Definition 2.2 (Kronecker product). Given matrices A € K™ and B € K"*" over
some field K, their Kronecker product A ® B = C' is a matrix in K™*"" with elements
Cintk—njm+t—m = AijBre fori € {1,...,n},j € {1,...,m}, k € {1,...,u} and
¢ e {1,...,v}. Intuitively, a copy of B is multiplied to each scalar element of A, as shown
in the following example:

(4 —6 -10 8 3

A‘_o —9} B_{s 5—5]
4B —-6B
A®B =g —93]

" [-10 8 3 -10 8 3
_4[8 5—5} _6[8 5—5}
| [-10 8 3 -10 8 3

_0[8 5 —5} _9[8 5 —5}

—40 32 12 60 —48 -18
|32 20 -20 —48 -30 30
~lo0o o0 0 90 -T2 -27

|0 0 0 -72 —45 45

In contrast to the usual matrix multiplication, the Kronecker product can be applied to
any pair of matrices, regardless of their sizes. The notation A®* is shorthand for A® A®
.- ® A repeated k times. Note that the size of A®* grows exponentially with k.

The function diag[-] has two definitions, depending on its input: If A is a square matrix,
diag[A] gives the main diagonal as a vector, i.e., diag[A] = (411, A422,...,4,,)T. On
the other hand, given a vector a of length n, diag|a] constructs a square diagonal matrix
with a along its main diagonal, and with 0 in every off-diagonal position, i.e., diagla] =
M with M;; = a; if i = j, and M;; = 0 otherwise, for all 4,5 € {1,...,n}.

In the context of quantum computing, we often encounter complex numbers: The set of
complex numbers is C, and their elements are represented equivalently as either a + bi
(cartesian form) or 7 - €!¥ = 7(cos i + i sin @) (polar form), with a, b, € R, ¢ € [0, 27),
and i as the imaginary unit characterized by i> = —1. The real part of a complex number
is defined as Re(a + bi) = a, and its imaginary part as Im(a + bi) = b.

The conjugate transpose of complex matrices is denoted by AT, which is an m x n matrix
with elements A;-i = A foralli € {1,...,n}and j € {1,...,m}. The notation c* for

12
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any ¢ € C with ¢ = a + bi denotes the complex conjugate defined as (a + bi)* = a — bi.
In polar form, this becomes (7 - €!¥)* = r - e71¥,

Binary Vectors

Binary vectors (or bit vectors) are a type of vectors used frequently throughout this thesis.
The set of binary vectors of length n are denoted by B”, where B = {0, 1} is the set of
binary digits, also called bits. Instead of writing, e.g., (0,1,0,0,1)T, the more concise
notation 01001 is used for constant bit vectors.

To allow for easier definitions later on, let us quickly recall a useful connection between
binary vectors and index sets.

Definition 2.3. Let ¢, : B” — B{1,...,n} with
m(z)={ie{l,...,n}: z =1},

which for a given bit vector z returns the set of indices i where z; = 1. The sets B" and
B{1,...,n} are isomorphic, their isomorphism being v, with its inverse

i) =1{1el},1{2¢€1},...,1{n c I})T.

n

Identifying bit vectors with index sets is often convenient. Special bit vectors are the
zero vector 0, = ¢,,1()), the one vector 1, = ¢, ({1,...,n}), and the unit vectors
el = 1,1 ({i}) Vi € {1,...,n}. The superscript vector length is omitted when it is clear

from context.

The norm ||z]|; € {0,...,n} of a bit vector z € B" is equal to its number of 1-bits,
which is also known as its Hamming weight. The Hamming distance between two vectors
z,y € B" is the number of indices ¢ where z; # y;, denoted by di(z,y) = ||z, +
lyll; — 2lz@yll; = D.imq zi + ¥i — 22y;. Equivalently, it is the number of bits that
need to be flipped to turn z into y.

For later use in Chapter 6, we introduce notation for fixing a certain subvector of all
binary vectors to a specific bit pattern:

Definition 2.4 (Binary vector subspaces). Letn € N, I C {1,...,n} an ordered set with
|I| = m, and b € B™. We define

B}, , = {z € B" |z; = b}.

Optimization

At the core of many, if not most, problems in computer science — and Machine Learning in
particular - lie optimization problems. In a very general form they consist of some domain
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X of solution candidates and a function £ : X — R called loss function, that assigns a
value to each solution candidate indicating how “bad” it is [29]. In other contexts, such
as Reinforcement Learning, we often find evaluating functions that measure how “good”
a solution is; these functions are more commonly called fitness functions, and they are
maximized during the optimization process. Now, the task is to find an x € X such that
L(x) = y is either (i) globally minimal, i.e., y = min,/¢x £(2), or (ii) locally minimal,
ie,y = ming epr(p) £(2”), where N (x) C X describes some neighborhood or vicinity
around x [29, Sec. 1.6]. For instance, if ¥ = B" for some n > 0, a neighborhood
N (z; k) might be {2’ € B" : dy(z,2') < k} for some fixed k € {1,...,n}, ie, all
bit vectors differing in at most k bits to the original vector. If ¥ = R, a neighborhood
might be N'(r;¢) = {r' € R?: ||r —7'|, < €}, i.e., an e-hypersphere around any given
point.

As an extension, some optimization problems employ constraints on the solution space,
forbidding certain solutions x € C C X. In the above framework, we can incorporate
such constraints into £ by defining

A ifz eC,

Le(x; ) =
(@4) {E(x) otherwise.

Here, A > 0 is a value that needs to be chosen large enough to render any solution
candidate x € C unfit as a local or global optimum, e.g., by choosing A = sup £ [29, Sec.
10.7]. However, computing or estimating this value can be tricky in practice.

Naturally, finding a globally minimizing solution is, in general, harder than finding a
local one, particularly if X is large or infinite, and it is harder to give guarantees of global
optimality [29].

Gradients in Optimization

If the loss function is differentiable, we can use its gradient to perform optimization [29,
Sec. 5.1]. The gradient of a function g : R? — R at a point r € R? is defined as

Vy(r) = (ﬁ(r) agm) , 22)

,...,ard

which is the vector of all partial derivatives w.r.t. every element of the input vector.
Inuitively, this vector in d-dimensional space points to the direction of steepest ascent [9,
Sec. 10.10.1].

Assume that X = R% and £ : R? — R. As we wish to minimize the loss function £, we
can start from some initial position r°, compute the gradient V.£(r) and take a step in
the opposite direction with a certain step size n > 0,

Pl =yt _pvL(rh), (2.3)
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for ¢t > 0. In the context of Machine Learning, 7 is often referred to as the learning rate [9,
29]. If ) is chosen small and 7" large enough, we can expect that ', 72, ... 7 reaches a

low point of L.

This method is known as Gradient Descent (GD), and is applicable whenever the candidate
space X is real-valued and the loss function is differentiable. A sensible starting point
should not be too far away from an optimum, so that it can be reached in a reasonable
number of steps (also depending on the step size n). Finding such an initial point is not
trivial.

Evolutionary Optimization

EAs are a family of optimization algorithms inspired by the principles of natural selection
and genetics. At the core, EAs involve a population of candidate solutions, which evolve
over successive iterations (often called generations) to improve on an objective function.
While many classical optimization methods rely on gradients or convexity assumptions,
EAs are inherently heuristic, making them well-suited for tackling complex, non-linear,
and multi-modal optimization problems that are common in ML and other domains. They
have been researched intensively and applied to a wide range of optimization scenarios,
including programming and formal grammars (see [30] for a detailed overview).

Algorithm 2.1 Generic EA after Back and Schwefel [30]; the additional individuals P
passed to the selection operator is either (), leading to comma selection, or P(t), leading
to plus selection.

t+0

Initialize population: P(t) = {a1(t),...,a,(t)}

Evaluate population: {f(a1(t)),..., f(a.(t))}

while termination criterion not reached do

Recombine: P'(t) = v(P(t)) = {a}(t),...,a\(t)}
Mutate: P”(t) = m(P'(t)) = {al(t),...,a}(t)}
Evaluate offspring: {f(af(t)), ..., f(aX(t))}
Select: P(t+ 1) =s(P(t) U P)
t+—t+1

end while

A generic EA is sketched in Algorithm 2.1, adapted from [30]: The algorithm begins with
a population of 1 > 0 candidate solutions, which are typically randomly initialized. Each
solution is evaluated against a fitness function f that measures its quality or performance.
The evolution of solutions is driven by two main genetic operators:

« Recombination (or Crossover) simulates sexual reproduction, where two or more
parent solutions combine to create A > u offspring. Recombination introduces
diversity by mixing the characteristics of the parents, allowing the offspring to po-
tentially explore new regions of the solution space. For instance, in a binary rep-
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resentation, crossover might involve swapping segments of two parent vectors to
generate new candidate solutions.

« Mutation introduces random, small changes to individual candidates. For example,
flipping a bit in a binary vector or perturbing a continuous variable. The role of mu-
tation is to maintain genetic diversity within the population, preventing premature
convergence to local optima. While recombination tends to explore combinations
of existing good traits, mutation ensures that the search process retains the ability
to explore unexplored areas of the solution space.

The population evolves by iteratively selecting the fittest individuals, allowing them to
survive and reproduce, mimicking Darwinian survival of the fittest. This selection pro-
cess creates a pressure toward finding better solutions over time. In (u + \) and (u, \)
evolutionary strategies, we find two common approaches to managing the population
between generations:

« For plus selection (or (12 + ) selection), the new population is formed by select-
ing the best solutions from both the current population (parents) and the newly
generated offspring. This means that the previous generation can still contribute
to the next, allowing high-quality solutions to persist indefinitely. This strategy
ensures stability and often leads to faster convergence, as the best individuals are
retained. The property of an EA that the best-performing solutions always sur-
vive to the next generation is called elitism. It accelerates convergence, but carries
the risk that diversity decreases too quickly, especially in small populations, poten-
tially leading to premature convergence to suboptimal solutions. This type of EA
is among the most representative and best-understood in literature [31, 32].

« For comma selection (or (u, \) selection), the next generation is formed exclu-
sively from the offspring, with no survivors from the parent population. This in-
creases the algorithm’s exploratory behavior, as the population is constantly re-
freshed. However, this method can lead to loss of valuable solutions if the offspring
do not outperform their predecessors, making it a more aggressive exploration
mechanism. Here, forced elitism can be used, where the globally best-performing
solution ever encountered is always saved separately from the population.

2.2.3. Quadratic Unconstrained Binary Optimization

A specific optimization problem that is in the focus of this thesis is quadratic unconstrained
binary optimization (QUBO). It can be considered the border stone between classical and
quantum optimization, as (i) a multitude of classical optimization problems can be re-
duced to it, (ii) its solution can be approximated by classical optimization schemes and
heuristics, and (iii) it can be solved using Quantum Annealing on quantum hardware.
The last point is due to its close connection to the Ising model used in statistical physics,
which will be elaborated on later in this section.
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Its great value lies in its applicability to a wide range of combinatorial optimization prob-
lems, from economics [33, 34] over satisfiability [35], resource allocation and routing
problems [36, 37] to machine learning [38, 7, 39, 5] — just to name a few. Its structural
simplicity has made it a popular target problem for special-purpose hardware solvers [40,
41].

Definition 2.5 (QuBo [42]). Letn € N and Q € Q,,, where Q,, C R™*" denotes the set
of all upper-triangular real-valued square matrices of sizen X n. We define the energy of a
binary vector z € B™ w.rt. Q as

fo(z) =2"Qz = Z ZQijzizj.

i=1 j=1

Now, QUBo is the problem of finding a vector z* € B" that has minimal energy w.r.t. fq,
ie,Vz € B": fq(z*) < fo(z).

A QuBo instance is fully specified by the matrix @, which is called weight matrix or
parameter matrix [42]. Q,, is the set of all valid QuBo weight matrices, and therefore the
set of all possible QuUBo instances of size n. In the course of this thesis, the terms “QuBo
instance” and “QuBo weight matrix” may be used interchangeably at times for this reason,
though they are technically distinct mathematical objects.

In literature we frequently encounter alternative definitions of QuBo, all of which are
equivalent to the one given above. The following list gives an overview of alternative
definitions g and their equivalent formulations using f, which are derived through simple
rearrangement:

« 9@(2) = 27Qz, where gq is to be maximized instead of minimized. Flipping the
sign of all elements of QQ yields the equivalent minimization problem f_gq.

+ 9Q,c(2) = 2TQz + zTc, with separate linear and quadratic terms, which is equiv-
alent to g diag|c]-

« gr(z) = zTRz, where R € R"*" is a non-triangular matrix. The definition of fr
in Def. 2.5 still works for such matrices, and our assumption of upper-triangular
weight matrices is simply a convention.

In addition, above definitions may accur in every combination, i.e., separate linear and
quadratic terms with a non-triangular matrix. Having explicit linear and quadratic co-
efficients may, at times, be a bit more intuitive and help clarity, whereas our definition
needs the special notation diag[Q)] to refer to the linear terms. However, the disadvan-
tage of many alternative formulations is that they do not uniquely define the energy
function, whereas for Def. 2.5 there is a one-to-one correspondence between @ and fg

forall Q € Q,,.

A QuBo instance may have multiple minimizing vectors, which leads to the following
definition of optimal sets:
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Definition 2.6 (Optimal set [1]). Let Q € Q,,. The set of minimizing vectors (or optimal
set) w.r.t. to Q is defined as

S°(Q) = {z € B" | fo(2) < fo(=) V2 € B").

Equivalently, S*(Q) = {z € B" | fo(z) = f*(Q)}, where f*(Q) = min,cpn fg(2) is
the globally minimal energy.

Using this definition, we can define another helpful notion that will be used extensively
in Chapter 6:

Definition 2.7 (Optimum inclusion [1]). Let Q, R € Q,, for anyn € N. We say that Q
includes the optima of R, written as Q C R, if S*(Q) C S*(R). If bothQ T R and
R C Q, we say that Q and R are optimum-equivalent, written as Q = R.

As a simple example, it is clear that Q@ = aQ Va > 0, as the minimum function is
invariant w.r.t. scaling with a positive factor. In general, however, it is just as hard to
determine if @ C R for any given Q, R € Q,, as solving the QuBo problem itself,
namely NP-hard.

Proposition 2.1. Determining @Q C R for any Q, R € Q,, is NP-hard, if Q has a unique
minimizer.

Proof. Our proof follows from a polynomial-time reduction to Quso, which is known
to be NP-hard (see paragraph about hardness below). Let E;, = —e;e] € Q, for all
i € {1,...,n}; clearly, S*(E;) = {z € B" | z; = 1}. Furthermore, we observe that
for any b € B" we have ()_;{z € B" | z; = b;} = {b}. Now, let z* = (1{Q C
E,},...,1{Q C E,})T7, whose entries can be computed efficiently according to our
assumption. It is easy to see that z* is the minimizer of @, as we were able to “probe”
every bit of the solution vector. As we computed z* in n steps, we reduced QuUso to
the decision problem @ T R in polynomial time, from which NP-hardness of the latter

follows. O

It is not very restrictive to assume that a given QUBo instance has only one unique mini-
mizing vector. This can be justfied by the intuition that a small perturbation of the weight
matrix can cause the the energy values in S*(Q) to “tip out of balance”.

Proposition 2.2. For every Q € Q,, and € > 0, there is always a weight matrix QCQ
with [|Q — Q|| < eand |S*(Q)| = 1, where ||-|| is any matrix norm.

Proof. Given Q € Qp and € > 0, choose 2* = argmax,cg.(q) [|2[l;- Now, define

A = diag[—e - 2*]. By construction, fa(z) = —e¢ - ||z, is minimal only for 2* within
S*(Q). Set Q@ = Q + A, and the proof follows from the optimality of 2* w.rt. Q and
the equivalence of all matrix norms. O
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Hardness of QuBo In its general form, QuBo is known to be strongly NP-hard [43,
44], and its exact solution requires, in the worst case, an exhaustive search of an expo-
nentially large candidate space. A range of solution techniques has been developed over
past decades. Some obtain the exact result [45, 42, 46] with worst-case exponential run-
ning time. Faster approximate techniques range from linear constraint solvers to heuris-
tics such as simulated annealing [47], tabu search [48], and genetic programming [49]. A
very comprehensive overview of solution techniques, both exact and approximative, can
be found in [50].

Perhaps most remarkably, QuBo can be mapped to an Ising model [51] and solved through
quantum annealing, which exploits quantum tunneling effects [17]. This close connection
to the Ising model shall be highlighted in more detail.

Connection to the Ising Model A computational model that is structurally very sim-
ilar to QuBo is the Ising model, named after physicist Ernst Ising, sometimes also called
“Lenz-Ising model” after its inventor, Wilhelm Lenz [52, 51]. Its original purpose is to
model magnetic spins of atomic particles arranged in a lattice, but, just like QuUBo, it can
be applied much more generally.

Definition 2.8 (Ising model [42]). Letn € N, J € R"*" and h € R". The energy of
a binary vector o € S" with S = {—1,+1} wrt. J and h is given by the Hamiltonian
function

n n n
HJyh(O‘) =o'Jo+hTo = Z Z JijUin + Z h;o;.
i=1 j=1 i=1
The probability of a configuration o is given by the Boltzmann distribution with an inverse
temperature 5 o< 1/T > 0,

Pyn(e;f) = e PHanl®) /750 with Zyp(B) = Y e PHanle),
o’'eSn

where Zz () is the partition function acting as the normalization constant.

The weights J;; are called interactions, and h; the external (magnetic) field strengths.
They are the equivalent of the quadratic and linear terms in the QuBo energy function in
Def. 2.5. In the original model, the variables form a lattice, i.e., every o; has only up to four
neighbors. Such structures can be realized through sparse interaction matrices.

Sometimes the Ising Hamiltonian function is defined with a negative sign, which stems
from a physical convention in its application to ferromagnetic systems. Additionally, a
scalar magnetic moment p is sometimes multiplied to hTo, which balances the interac-
tions and external field strengths. Both can be incorporated into J and h without loss of
generality, which is why we assume the form given above throughout this thesis.

It is easy to see that there is a simple linear mapping between QuBo and the Ising model,
which shows that the two are equivalent.
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Model 1 v ....................... :
Training —» Evaluation —> Deployment

Data  —> Pre-Processing 7 T

Figure 2.1.: Generalized machine learning pipeline.

Proposition 2.3. Given any Ising model with interactions J € R™*"™ and external field
strengths h € R", there is a QuBo weight matrix ) and a constant offset ¢ € R, such
that

VzeB": Hyjp(l-22) = fg(2) +c, (2.4)

where fq is defined as in Def. 2.5. Conversely, for any given Q € Q,,, we can find J, h
and c¢ such that Eq. (2.4) holds as well.

Proof. Letn € N, J € R™" and h € R" be arbitrary but fixed. Note that the mapping
z — 1 —2z is an isomorphism between B" and S", mapping entries 1 to —1 and 0 to +1.
Through simple rearrangement we obtain

Hyn(1—-22z)=(1-22)TJ(1—-22z)+hT(1 —22)
=42TJz—-22TJ1-21"Jz+17J1 - 2h"z + hT1
=2"4J)z—=2(J14+J"1+h)Tz+hT1+17J1

=:C
=27 (4J —2diag[J1 +JT1 + h])z+ ¢
-Q

= fQ(Z) +c.

To ensure that @ is upper-triangular, simply map @;; — Q;; + Qj; and Qj; + 0 for all
i < j. The opposite direction, i.e., obtaining J and h from a given @ is analogous by
applying z — (1 — ) /2, which yields

fo((1=0)/2) = UT(Q//ZI)U +(-(Q1+Q™)/4)To +17Q1/4.

=:J =:h =:—c

Machine Learning

For many complex tasks, we cannot easily find precise mathematical models or develop
algorithms that solve them exactly. A number of such tasks require, by human standards,
a certain degree of intelligence, like recognizing shapes and objects in images, finding
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patterns in data, or making predictions based on prior observations. Over the past 80
years, numerous methods have been developed to tackle such tasks nonetheless, opening
the research area of ML. Over the past few decades, due to leaps in hardware development,
ML has gained greater relevance than ever and is a key technology in a wide range of
applications.

At its core, ML uses optimization techniques with the goal of learning from data by (i) col-
lecting a data set D containing examples, (ii) defining a model fg with parameters 6,
(iii) defining a loss function on the model’s output, and (iv) iteratively improving the
model’s loss by updating @ based on the examples in D.

If the data set consists of pairs of input data points and target values, and the model is
supposed to predict the target values from any given input, we arrive at the definition of
supervised learning [9, Sec. 2].

Definition 2.9 (Supervised Learning [9]). Let D be a joint distribution over X x Y, and
D C X x Y asample drawn from D with |D| = N, containing pairs (z*,v;) of input data
points x* € X and labels y; € Y fori € {1,...,N}. The data points can be interpreted
as rows of a matrix X such that X;. = x'. The columns of this matrix are called features.
The sample D is called a data set. Given D, we want to find a function fg : X — Y with
parameters O that takes data points and returns good predictions § = f(x) for any data
point x € X (particularly outside the set D), e.g.,

f(x) = argmax pp(y | ©),
yey
where pp is the probability mass or density function w.r.t. distribution D. If ) is continuous
(e.g. Y = R?), this problem is called regression. Otherwise, if ) is discrete and finite (e.g.,
Y =A{1,...,C} for some C € N), the problem is called classification.

A general ML pipeline is shown in Fig. 2.1 and consists of the following steps: A model
is chosen from a family of models that is suitable for the classification or regression task
at hand. The raw data is pre-processed to remove unnecessary features, discard or im-
pute missing values, or augment existing features. The available data is then split into a
training and test set, and the model’s loss is minimized through an (iterative) optimiza-
tion routine in a training phase, until the loss has converged or a fixed budget is depleted.
Afterwards, the model is evaluated on the test or evaluation set to check if the model gen-
eralizes to newly observed data. If the performance is not satisfying, the model hyperpa-
rameters or pre-processing may be adapted and training repeated, until the performance
meets the expectations, after which the model can be deployed.

Model Based on the task at hand, we need a parametric model that we can train. Pop-
ular models include ANNs, SVMs (see Section 2.3.2), Decision Trees (DTs) and Random
Forests (RFs), but also simpler models such as Linear and Logistic Regression, as well
as statistical models such as Gaussian Processes and Markov Random Fields [9]. If we
have little or no prior knowledge about the data, the model function fg should be able
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to approximate any function given the right set of parameters 8. The problem of mini-
mizing the loss therefore reduces to finding appropriate parameters 6 w.r.t. to some data
set:

mgn ﬁ(f@; Deval)'

If the model has real-valued parameters, then this problem can be approached using
gradient-based methods, such as gradient descent or stochastic gradient descent [29,
Sec. 2]. Many models have both trainable parameters and hyperparameters: The former
are adapted during the training procedure to minimize the loss function. The latter are
fixed in advance depending on the input data, prior knowledge and performance require-
ments [29, Sec. 3.2]. Examples of hyperparameters include but are not limited to

« the number of input, output and hidden neurons in an ANN;
« the choice of activation function in an ANN,

« the misclassification penalty factor C' in Support Vector Machines (see Section 2.3.2),

the ansatz (gate structure) of a variational quantum circuit (see Section 2.4.2),

« the number k£ of cluster centers in k-means clustering.

Data As we have seen in Def. 2.9, we assume that the data stems from an underlying
probability distribution . In practice, this true data distribution is unknown, but we can
approximate it with the empirical distribution of the sample data set. For discrete X and
Y, the probability mass function can be simply found by counting,

1
pp(x,y) = N Z Hz' =z Ay =y} (2.5)

(=',y")€D

The larger the data set, the more closely the distribution approaches the true data dis-
tribution. It is common practice to split a data set into two or more subsets, using one
for training and one for evaluation in order to test the model’s behavior on previously
unobserved input values. If the model works well on the evaluation data set, we say that
it generalizes well [9, Sec. 2.9]. On the other hand, if the model has a low loss values on
the training data, but a very high loss on the evaluation data, we say that the model is
overfitting.

Pre-Processing In most practical applications, the raw data cannot be immediately
used for training, but has to be processed (see, e.g., [53]). This can be due to various
reasons, such as

« vastly different value magnitudes that have to be normalized through scaling,

+ an excessive amount of noise, which has to be mitigated, e.g., through low-pass
filtering or smoothing using a moving average,
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o feature columns containing missing values, which have to be imputed, or data
points with missing values simply discarded; this is necessary in particular for
gradient-based optimization, which cannot handle missing values when comput-
ing the gradient,

« the presence of irrelevant features with no or little predictive power, which can
be discarded to save resources (see Section 2.3.1),

« the necessity of feature engineering by applying (non-linear) transformations to
one or more features to create new features, often based on prior knowledge about
the data or task,

+ alow amount of data points requiring data augmentation, e.g., by modifying or
transforming existing data points to obtain more training data; this is especially
popular for image data that can be scaled, rotated, cropped or sheared.

After applying the necessary pre-processing steps, the data is ready to enter the training
loop where the loss function is iteratively evaluated and minimized.

Loss Function As the data distribution D is generally unknown, a loss function £ is
used to quantify the quality of a given predictor. For instance, assume we have some data
set Dirain = { (", ¥i) }ie{1,..., M} then a suitable loss function for a classification problem
may be

M
ENegAcc(f; Dtrain) = _% Z ﬂ{f(wz) = yi}a (2~6)
i=1

which is the negative classification accuracy. On the other hand, a loss function for a
regression problem with ) = R may be

M
Luise(f; Duain) = 77 9 () — i), @)
i=1

commonly known as the Mean Squared Error (MSE). In addition to the primary objective
of correct classification or regression, loss functions may contain regularization terms that
penalize the model parameters, e.g., discouraging values of large magnitude by adding a
p-norm of the parameter vector weighted with some positive factor A,

1]\/[

['MSE,Reg(f@; Dtrain) = M Z(f(wl) - yi)2 + >‘H®”2 (2'8)
=1

Different types of regularization lead to different model properties (see [9, Sec. 3.4]), most
notably

1. L1 regularization (or “LASSO”) encourages sparse parameter vectors, i.e., the
larger ) is chosen, the more parameters will have a value of 0: |6,
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2. L2 regularization (or “ridge regression”) encourage evenly distributed parameter
values with small magnitudes by penalizing large outliers: ||8||3

The choice of loss function and regularization has profound impact on the training process
and the resulting model, its generalization properties and optimality guarantees. Making
the right choice in practice is mostly an engineering task, as it depends on the interplay of
the data and its properties, the model type, and the training procedure. Some regulariza-
tion techniques are enacted directly on the model, independently from the loss function,
such as drop-out in ANNS.

Training & Evaluation After choosing a model, setting its hyperparameters and prepar-
ing the training data, the training procedure is executed. For many models, this involves
iteratively adapting the trainable parameters 6 of the model in order to minimize the loss
function on a training set Dyyain [9]. An overwhelmingly popular approach is SGD, where
the loss function is evaluated on a batch of training data (i.e., a subset of Dy,iy) and the pa-
rameters nudged in the opposite direction of the gradient with a learning rate > 0 [29,
Sec. 8.1]. The gradient computed from batches that are sampled uniformly from the train-
ing set is, in expectation, equal to the gradient computed on the entire training set, due
to linearity of expectation. SGD reduces the computations load significantly, especially
on very large data sets.

The training procedure is terminated if the loss value on the training data does no longer
improve with each iteration, i.e., it has reached convergence, or if some fixed budget
of function evaluations is reached. Particularly in deep neural network training, early
stopping may be employed to prevent overfitting and achieve higher generalization [9,
Sec. 11.5.2],i.e., alower loss value on the evaluation data set. Instead of a single evaluation
set, it is common to use cross-evaluation, which gives a more reliable estimate of the
expected loss on unobserved data [9, Sec. 7.10]: In k-fold cross validation, a data set is
split into k equally-sized partitions, and each partition in turn is set aside for evaluation
while training is performed on the union of all remaining partitions. The resulting k
evaluation loss values are averaged and gives a better impression of the model’s loss on
unseen data at the cost of repeating the training procedure k times.

A different ML scenario is unsupervised learning, where we have no labels y € ) but
try to find patterns in the input data [9, Sec. 14]. The most prominent example of un-
supervised learning is Cluster Analysis, where we try to find clusters of “similar” points
in a data set [9, Sec. 14.3]. The notion of similarity may be defined as (i) a distance to
a common center point, (ii) a high distance between points of different clusters, (iii) a
low variance within the same cluster, and many more. Another (although related) task is
outlier detection, where we want to detect “unusual” points in a data set, which may be of
special interest.
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2.3.1. Feature Selection

The complexity of many ML model families scale with the number of input data dimen-
sions, i.e., the number of features. That is, a model with more features requires more
memory and more computational effort for its training. Small and fast models are im-
portant in applications areas with tight resource constraints, such as embedded systems.
Therefore, it is a common goal in ML pipelines to reduce the number of features with min-
imum information loss by means of a suitable transformation from the raw input data to
the training data. This strategy is also known as dimensionality reduction [54].

An important example for such a strategy is FS, where the input dimension is reduced
by selecting only a subset of all available features without performing additional pre-
processing transformations [55]. This approach is especially effective when dealing with
data from sources that produce many redundant or irrelevant features, which can be elim-
inated without significantly impacting the output quality. For instance, if we try to di-
agnose a specific disease from a vast array of medical measurements (body temperature,
concentration of various substances in a patient’s blood, heart rate, etc.), reducing the
number of features that are necessary for this diagnosis not only allows for smaller models
but might even help experts pin down the underlying cause of the disease. Consequently,
FS can be seen as a tool to reduce model complexity and improve ML interpretability in
a single step.

Definition 2.10 (Feature Selection). Presume a classification task on a given data set D =
{(x, Yi) Yieq1,....N} withn-dimensional features x' € X C R" and class labelsy; € Y C N
foralli € {1,...,N}. The problem of FS corresponds to finding a subset S C {1,...,n}
of these n features, such that the reduced data set

Ds = {(%5,yi) bieq1,...n}» wherezs = (2))]cq

leads to comparable performance as the original data for some data-driven task, such as
classification.

Typically, this subset is found by solving a suitably posed optimization problem, which
can also explicitly depend on the classification model.

There are numerous approaches of defining optimal feature subsets and finding or ap-
proximating them [55]. Wrapper methods directly use the performance of classification
or regression models as a criterion for selecting features [56]. As the model must be re-
trained on every candidate subset, this method is very resource-intensive. Finding the
optimal subset requires a brute-force search of all 2" possible subsets, which is generally
intractable for large feature sets and non-trivial models. Instead, heuristic optimization
schemes are often used, such as greedy search or evolutionary algorithms [57, 58].

Filter methods use a measure of relevance, e.g., correlation or Mutual Information (MI)
with the label or target variable, for ranking features and discarding those below a certain
threshold. While those methods are very easy to compute and work well in practice, they
often do not consider redundancy between selected features, leading to subsets that could
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Figure 2.2.: Schematic example of an SVM in 2D space: Circles are data points of two classes
(hollow and filled) separated by a hyperplane (here, a line). The margin (light blue
area) is defined by two points (red) that lie on its boundary, the support vectors.

potentially be much smaller. When considering redundancy, such as pairwise MI between
selected features, as an additional criterion to be minimized, the optimization problem’s
difficulty increases, as it becomes non-linear and NP-hard.

Support Vector Machines

SVMs are among the most extensively studied ML models, developed mainly by Vladimir
Vapnik in the 1990s [59, 60]. It is, in its original form, a binary classification model,
separating points belonging to one of two classes by means of a separating hyperplane.
As there may be infinitely many such hyperplanes, an additional objective is to maximize
the margin, which is the area around the hyperplane containing no data points, in the
hope to achieve the best possible generalization. See Fig. 2.2 for a schematic view of an
SVM model. Extensions of this original SVM model allow for multi-class classification
and even regression, which we will explore in Chapter 9.

Assume we have a data set D = (', ;) C R? x S, where y; denotes the class label, +1
or —1. Further assume we have some feature map ¢ : R — R/ which transforms the
data into some potentially high-dimensional space — for a linear SVM, this feature map is
simply the identity function. The separating hyperplane can be represented by its normal
vector w € Rf and an offset b € R. To ensure correctness, the optimization requiers that
each data point is classified correctly, i.e., each data point should be located on the correct
side of the hyperplane:
(wlp(a') = b)y; > 1.

As the assumption of perfect linear separability is unrealistic for real-world data, each
point is assigned a slack variable &;, such that a value of §; > 0 indicates that =* violates
the correctness condition, i.e.,

& = max(0,1 — yi(’ngp(mi) —b)). (2.9)
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Table 2.1.: Examples of kernel functions K (z, «') and their definitions (taken from [61]).

name definition parameters
Linear xTa!
Polynomial (xTa’ + ¢)P peEN,ceR

RBF/Gaussian  exp [—7”:1: —2'|?| yeR,

This yields the second objective, which is to minimize the total slack ), &. Combined,
we arrive at the following optimization problem.

Definition 2.11 (Primal SVM [9]). Given a labeled data set D = {(mi,yi)}ie{l’m’]\;} C
R? x S and a feature map o : RY — RY, the primal SVM is the optimization problem

1
min —||w|3 + C17¢ (2.10)
w,b 2
st (wlp(x’) —b)y; >1-&Vie{l,...,N},

where € = (£1,...,&N)T, & = max(0, 1 —y;(wTe(x) —b)) Vi€ {1,...,N},andC > 0
is a hyperparameter controlling the impact of misclassification.

Dividing Eq. (2.10) by C provides an alternative perspective on SVM training as a hinge-
loss minimization with L2-regularization on w, where C is the inverse regularization
factor. Typically this problem is solved in its Lagrangian dual form.

Definition 2.12 (Dual SVM [9]). Let D as in Def. 2.11, withy € RY the vector containing
all y; in D, X the N x d data matrix as defined in Def. 2.9, and K = (X )Tp(X) the
kernel matrix w.r.t. some feature map p. The dual form of the SVM training problem given
in Def. 2.11 is

1
max 1 o — §aT(ny oK)
st0<aq, <CVie{l,...,N},
a'y =0.

If  is the identity function, the matrix K = X T X is called Gram matrix and has as entry
K;; the inner product of data points z* and =’ for all i, j € {1, ..., N}. However, many
data distributions are not separable by a simple hyperplane in the original feature space.
In this case, the feature map may be chosen to project the data into a higher-dimensional
space where it is possible to separate them linearly. If f >> d, computing the feature map
explicitly may be very expensive. The dual SVM has the great advantage of exploiting
the kernel trick, as it does not operate on the feature space directly, but instead only uses
inner products of feature vectors [9, Sec. 12.3.7]. Therefore, we can define a function
K : RYxR? — R called kernel that implicitly computes K (z, x') = o(x)Tp(x') without
actually realizing the feature map, allowing for efficient computation of inner products
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in feature space. The implicit feature spaces of certain kernels, like the RBF kernel, are
even infinite-dimensional and cannot be explicitly computed. Common kernels are listed
in Table 2.1.

The optimized vector w is the parameter or weight vector of the SVM model, and b its
bias. Model predictions are inferred via

G p(®) = sign(wTp(x) —b), (2.11)

where sign : R — § is the signum function that returns 1 if its argument is greater than
0, and —1 otherwise [9, Eq. 12.2].

Quantum Computing

Quantum Computing (QC) is a computing paradigm whose origins lie in the latter half of
the 20" century. Over the past years, it has gained renewed attention, as physical quan-
tum computers are continually improved, and QC holds the potential to solve certain
problems requiring considerable computational efford on classical (i.e., non-quantum)
computers faster and more efficiently [15, 16]. More recently, QML emerged as a new
research field aiming to apply QC techniques to typical ML tasks, such as classification
and regression [21].

At its core, QC replaces classical bits with quantum bits (or qubits, for short) and develops
strategies to perform computations with them. In contrast to classical bits, which can
take only the values in B = {0, 1}, the states of qubits are continuous, assuming discrete
values only when measured. The following paragraphs give an overview of the basic
concepts of QC. For a more extensive introduction, see [62], from which the information
presented in the following paragraphs was taken.

Single-Qubit States The state of a single qubit is denoted by |¢) (say “ket psi”) using
the Bra-ket notation, which simply stands for a complex-valued column vector [ag, 1|7
called amplitude vector, with its entries called amplitudes accordingly. Qubit state vectors
are elements of Hilbert spaces H. For all intents and purposes, we may simply assume
that %4 = C2 in the scope of this thesis?. The conjugate transpose of |1) is notated as
(W] = (|W)T = [af, o] (say “bra psi”). Every amplitude vector [t)) is normalized to
obey
(W) = laol* + Jaa|* =1,

where (¢|1)) is the notation for the inner product between two states. Like classical bits,
qubits have two basis states, |0) and |1), which are simply the canonical basis vectors of
the Hilbert space, [0) = [1,0]T and |1) = [0, 1]T, which lets us write |¢)) = ag |0) +aq [1);
this highlights that single-qubit states are a mixture of basis states. If both g # 0 and
a1 # 0, the qubit is in superposition, which means that it takes both basis states 0 and 1
with a certain probability after measuring [62, Sec. 1.2].

’However, the notion of Hilbert spaces is more general in that it allows for infinite-dimensional states.
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Measurement It is impossible to directly observe a quantum state, i.e., we cannot mea-
sure the amplitudes. Instead, measuring a qubit causes its state to collapse to one of its
basis states. The absolute square of each amplitude yields the probability of this qubit
to be measured in the respective state. The normalization property of qubit states en-
sures that the probabilities for each basis state add to 1. The basis states |0) and |1)
act like classical bits, always assuming 0 and 1 with probability 1. However, the qubits
|9) = [1,1]7/v/2 and |¢) = [1, —i]T/+/2 both have an equal probability to be measured
in either basis state, as we find

!

5"

’1 " ‘—z‘
V2| V2
Notably, even though the amplitude for basis state |1) is negative (and even complex)
in |¢), the measurement probabilities are identical. This shows that quantum states

hold more information than cannot be observed or determined exactly through measure-
ment [62, Sec. 1.2]. Other special 1-qubit states are:

0) +11) 0) — 1)
+ — —) =
+) V2 = V2
0) +il1) 0) =i 1)
—_) = — —) = —
Multi-Qubit States If n qubits |¢1), |p2), ..., |¢,) form a system, their state can be

described by a joint amplitude vector |¢) = |p1¢2...Pn) = |d1) ® |P2) @ -+ @ |dn),
where ® denotes the Kronecker product described in Section 2.1 [62, Sec. 2.1.7]. This
vector has size N = 2". Just as before, each entry is the amplitude of a basis state
li) = el Vi € {0,..., N — 1} of the joint system, which can be interpreted as a binary
string of length n. Again, the normalization condition (¢|¢) = 1 holds. Conveniently,
the binary vector corresponding to the i-th amplitude and basis state |i) (counting from
0) is the binary expension of i.

Example 2.1. Let |11) = |0) = [1,0]T,|12) = |1) = [0,1]Tand |[¢3) = |—) = [1, —1]T/V/2.
Their joint state is [1)11213) = [11) ® [1)2) ® |1b3), which expands to

1 [0 000
0
1 | —1] 0 001
1 1 1 010
1 I e S
V2 MR V2|0 100
-1 0 101
0 (1] 0 110
_1 —1] | | 0 | 111

as a single length 23 joint state vector. The gray bit strings on the right indicate the
corresponding basis state for each amplitude. As we can see, the probability mass is
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equally divided between the states 010 and 011, because |1);) and |1)2) are in basis states,
and only |¢3) is in an equal superposition. Therefore every state where [¢)172) # |01)
has an amplitude of 0.

A multi-qubit state that can be expressed as a Kronecker product of single-qubit states is
called separable [62, Sec. 1.2.1]. However, through sequences of state manipulations, we
can construct quantum states that cannot be decomposed, such as the 2-qubit state [¢)) =
[1,0,0, 1] called Bell state: It has an equal probability to be measured as 00 or 11 [62, Eq.
1.7]. We say that the qubits are entangled, implying that their individual measurement
probabilities are not statistically independent. In the case of the Bell state, the statistical
dependence is maximal, as the measurement outcome of the first qubit fully determines
the state of the second one. There is no more efficient way to store the amplitudes of
arbitrary entangled states than one by one. This is one of the reasons why simulating
quantum computing quickly becomes computationally intractable when the number of
qubits increases.

Observables If we interpret a quantum state as a probability distribution over its basis
states, we may associate some value g(|z)) € R with each outcome |z) of a quantum
measurement. Now, given a state |¢)) that is in superposition and entangled, we may
be interested in the expectation value E[g(|x))]. To this end, the concept of observables
provides the formal framework for evaluating expectations over quantum states. An ob-
servable O € CN*V (with N = 2") is a Hermitian matrix, which means that it is equal to
its own conjugate transpose, O = O, and it encodes our evaluation of the quantum state:

The expectation of O w.r.t. a quantum state |¢)) = [a, ..., an_1]T is given by
N
WlO ) =Y Ojaira . (2.12)
ij=1
If O is diagonal, we obtain the expectation value over all basis vectors [0) ,...,|N — 1),

as (Y| 0O |[¢) = Zfil = Oyilai_1)?, and |a;_1|? is the measurement probability of state
|i — 1). However, Eq. (2.12) is more general in that it allows for evaluation in arbitrary
orthonormal bases of the Hilbert space, i.e., the observable has the form A"1TOA, where
A is any base projection matrix. Intuitively, non-diagonal observables encapsule the ac-
tion of projecting into a different basis, measuring, and projecting back into the original
basis [62, Sec. 2.2.5].

Example 2.2. Assume we have a 3-qubit state |¢)) = [2,0,0,1,0,—1,0,4]/v/22, and we
want to assign to each basis state its number of ones, e.g., [001) — 1,|111) + 3, and so on.
The expected number of ones that we observe is given by (1| O |¢)) with the observable
O = diag|0,1,1,2,1, 2,2, 3], which has the number of 1-bits of all 3-bit strings along its
diagonal:

1 52
(WO) = 5(0+0+0+2+0+2+0+48) = - ~2.36.
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g2 : |0) X Rx (61)

g3 : 10) X — Ryz(02)

Figure 2.3.: Exemplary quantum circuit with 3 qubits named ¢; to ¢3: All qubits are initialized
in state |0). First, a Hadamard gate is applied to ¢, and a CX gate is applied to both
g2 and g3, with qubit 1 serving as control. Then, an Rx gate is applied to g2, and an
Rz gate to g3 with parameters 6; and 6, respectively. Finally, a measurement of g3
is taken.

A special set of observables are the Pauli matrices denoted by o®), o) and (%), each
with eigenvalues 1 [62, Sec. 2.1.3]. Their expectation values w.r.t. a quantum state
|1) gives the dot product of the quantum state with the corresponding axis of the Bloch
sphere. For instance, taking the expectation of |0) w.rt. o(®) yields (0| o) |0) = 1,
as |0) points along the x-axis. However, (0| ¢ |0) = 0, as |0) is perpendicular to the
y-axis.

The Circuit Model

So far we have seen what quantum states are and how we can “evaluate” them through
Hamiltonians. The question remains how to construct and manipulate quantum states to
do something useful with them, i.e., perform quantum computing. A popular approach
is through quantum circuits, a graphical representation of sequential manipulations of a
joint quantum state inspired by logical circuits [62, Sec. 1.3.4].

In Fig. 2.3, an exemplary 3-qubit quantum circuit is shown, which is read from left to right:
Initially, all qubits are in state |0), which results in a joint state |000) = [1,0,0,...,0]T.
First, an H-gate (Hadamard gate) is aplied to qubit ¢;. Quantum gates, symbolized by rect-
angular boxes in the circuit diagram, represent linear transformations of the amplitude
vector, i.e., complex-valued matrices of size 2" x 2" that preserve the property (¢|¢) = 1.
Matrices U of this type are called unitary, their defining property being UT = U~ [62,
Sec. 1.3.1]. Applying a gate to a single qubit is simply a matrix-vector multiplication, e.g.,
U |0). The operation performed on the entire joint state is H®I, ® I5, as the absence
of a gate implies the identity function. The matrix H representing the Hadamard gate is

defined as
1 (1 1
H= 7 [1 _1] . (2.13)

It maps |0) — |+) and |1) — |—), creating an equal superposition from basis states.
The next operation in Fig. 2.3 is a controlled NOT gate (also called CX or CNOT), which
consists of a control (here: ¢;) and a target qubit (here: ¢2). It has the effect of invert-
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Figure 2.4.: The Bloch sphere, a 3D representation of a single-qubit quantum state; the basis states
w.r.t. the Z-basis are at the north and south pole. Adapted from [62].

ing the target qubit’s state if the control qubit is 1, otherwise leaving the target qubit
unchanged:

1000
01 00

cX =0l @ L+ e0-h) =, 4 o (2.14)
0 01 0

Another CX gate is applied to g3 with g; as the control. Finally, two rotation gates Rx
and Ry are applied to g2 and g3 with parameters 6 and 605, respectively. As amplitude
vectors have unit length, we can view the set off all single-qubit states as the surface of
a unit sphere, which is called the Bloch sphere, shown in Fig. 2.4 [62, Sec. 1.2]. Applying
Ry and Rz has the effect of rotating a point on this sphere around the X or Z axis by
a certain angle, hence 61,602 € [0,27) [62, Sec. 4.2]. An overview of commonly used
quantum gates and their corresponding unitary matrices is given in Table 2.2.

Gates such as Rx, Ry and Rz provide a way to input classical data into a quantum cir-
cuit, forming the basis of Variational Quantum Circuits (VQCs) (see Section 2.4.2). By
repeatedly measuring the circuit’s final state, i.e., sampling from the probability distribu-
tion resulting from the squared amplitudes, and counting the observed basis states, the
overall joint distribution can be approximated, which can serve as classical data output.
How exactly this information is interpreted depends on the application at hand. Natu-
rally, the more measurements are taken, the closer the empirical distribution approaches
the true distribution defined by the qubit state, as less sampling noise is present in the
output. However, for each measurement, the quantum state is destroyed, and the entire
circuit has to be executed again to take another measurement.

Variational Quantum Circuits

Given a pre-defined quantum circuit containing gates with real-valued parameters (such
as Rx, Ry and Ryz), we can try to optimize these parameters w.r.t. some objective. This
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Table 2.2.: Overview of commonly used quantum gates and their corresponding unitary matri-

ces [62].
Name Symbol(s)  #Qubits Parameters Unitary
Identity I 1 [(1) ﬂ
Not/Pauli X X, o®) 1 [(1) (ﬂ
Pauli Y Y, oW 1 [? Bl}
Pauli Z Z, o? 1 [(1) _01]
1|11
Hadamard H 1 Bl 1
Phase S 1 [(1) ﬂ
1 0
7'['/8 T 1 |:O €i7r/4:|
Square root of X VX 1 % B i_ i 1 _T_ j
[1 0 0 0]
Controlled Not CX,CNOT 2 8 (1) 8 (1)
10 0 1 0]
[1 0 0 0]
Swap SWAP 2 8 (1) (1) 8
0 0 0 1}
. cos(0/2) —isin(0/2)
X-Rotation Ry 1 6 € 10,2m) isin(0/2)  cos(0/2)
) cos(f/2) —sin(0/2)
Y-Rotation Ry 1 0 € 10,2m) sin(6/2)  cos(8/2)
i ) exp(—i6/2) 0
Z-Rotation R 1 6 € 10,2m) 0 exp(if/2)
q1: —e—— q1: ——
a1 — H —
qz: _69_ qo: —%K—
(a) Hadamard gate
(b) CX gate (c) Swap gate

Figure 2.5.: Graphical representation of quantum gates. (a) Single-qubit gates consist of a box
with the corresponding symbol inside. (b) The Controlled Not gate (CX) involves a
control (q1) and a target qubit (¢2). (c) The Swap gate has the effect of swapping the

states of two qubits.
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framework is named VQCs, and a pre-defined circuit layout is called ansatz (plural an-
sdtze) [63].

For example, in a quantum chemistry problem, the ansatz might represent the ground-
state wavefunction of a molecule, with the parameters corresponding to the amplitudes
of different quantum states [64]. In a ML context, the ansatz might represent a classifica-
tion model, where the parameters are optimized to minimize a loss function over a data
set.

The general process of working with VQCs involves (i) defining an ansatz based on the
structure of the problem, (ii) evaluating an objective function (often an expectation value,
such as energy or cost) using quantum measurements, and (iii) optimizing the parameters
classically by minimizing (or maximizing) the objective function. A concrete algorithm
is the Variational Quantum Eigensolver (VQE) [65, 66], which uses a hybrid quantum-
classical computational approach [67] to minimize the expected energy (V(0)| H |V (0))
of a Hamiltonian H. For this purpose, an ansatz U () is prepared on a quantum gate
computer such that |¥(0)) = U () |0). The circuit parameters @ are learned with a clas-
sical optimization routine in order to find an estimate for the ground state |¥) ~ |¥(8)).
Using an Ising-Hamiltonian, this approach can also be used to solve QuBo problems, as
we do in Section 3.4.4.

Choosing the right ansatz is problem-specific, and a poorly chosen ansatz can limit the
algorithm’s ability to represent the solution space, leading to suboptimal results. Tech-
niques such as hardware-efficient ansitze (which use the native gate set of a quantum
processor) or problem-inspired ansétze (which leverage knowledge of the problem struc-
ture) are often employed.

Adiabatic Qquantum Computing

In recent years, quantum computing has opened up a promising approach to solving Quso
instances, which builds largely on physical properties of the Ising model. As we have seen
in Proposition 2.3, we can convert between QUBO instances and Ising models by a simple
variable substitution to obtain a Hamiltonian function. By replacing the abstract binary
variables o; with Pauli operators, we obtain a Hamiltonian operator Hisin, which is an
observable of the form

Hyng = Y Jijool? +3 hiol? + e, (2.15)
i,j=0 i=0
1#]

where O'Z-(Z) = I?Fl Ro®® Igg"*" denotes the Pauli-Z operator acting on qubit ¢. For
brevity, we simply write H in the following. Notice that Eq. (2.15) in contrast to Def. 2.8
excludes the terms Jijagz)aj(z) for the case ¢ = j, which is due to the fact that a 2-qubit
operator cannot be applied to the same qubit. Assuming w.l.o.g. that J is a hollow matrix

resolves this disparity.
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The Pauli-Z operator has eigenvalues 1 with corresponding eigenvectors |0) and |1).
Since the Pauli spin matrices of different qubits commute, the minimum eigenstate |¥)
of the Hamiltonian with H |¥) = E |¥) can be written in terms of |¥) = [¢)1) ® - -+ ®
|tn), where |1p;) € {|0),|1)}Vi € {1,...,n}. Intuitively, if qubit ¢ is in state |0), the
eigenvalue of hiag”z) is —h;, and if it is in state |1), the eigenvalue is +h; — or we can
conveniently say that the eigenvalue of hiag'z) is simply h;o;, where o; € Sis the abstract
binary variable of the original Ising model, obtained by substituting |1) — —1 and |0) —
(2) .(2)

+1. Similarly, the eigenvalues of J;;0;," "o ;

S defined as above.

come out to be exactly J;;0;0; with 0y, 0; €

As a consequence of o(?) being diagonal, H € C2"*?" is also a diagonal observable, con-
taining the energy values of all possible states o € S" of the Ising model in lexicographical
order. Therefore, the minimal eigenvalue F represents the minimal energy value of the
corresponding QUBo instance, f*(Q). The respective solution vector z* € S*(Q) can
be obtained from the eigenstate |¥) with the assignment z* = |(e}|¥|e|W)|* based
on a projective measurement of each qubit. Summarized, the QuBo problem can be
transformed into the problem of finding the minimum eigenstate (or ground state) |¥)

of H.

However, finding the ground state of a Hamiltonian is in general also a non-trivial prob-
lem, and possible solution strategies depend on the properties of the quantum hardware
and the shape of H. The most common approach to this problem is Quantum Annealing
(QA) [17, 68], which is suitable for special-purpose quantum computing devices named
“quantum annealers”. The Canadian company D-Wave has specialized on building quan-
tum annealers, whose flagship device at the time of this writing has around 5,000 physical
qubits®.

QA exploits the adiabatic theorem [69] by preparing the ground state |¥y) of a simple
“mixing Hamiltonian” H( and then slowly transferring the system into the ground state
|W) of the target Hamiltonian H; through adiabatic time evolution [70], which can be
modelled as

H(s)=(1— A(s))Hy + A(s)H;,

where A : [0, 1] — [0, 1] is some monotonic interpolation schedule with A(0) = 0 and
A(1) = 1, and s slowly transitions from 0 to 1 over a certain time time period 7. A
typical choice of Hy is — ) ;" ; agw), whose ground state is [+)%" = > _p. |2) /2N/2,
an equal superposition of all qubits as can be generated through parallel Hadamard gates
H®"|0...0). The adiabatic theorem states that, if the transition is performed slowly
enough, the system will remain in its ground state, which means that at the end the

ground state of the target Hamiltonian H; can be sampled by measurement.

Limitations The rate at which the Ising Hamiltonian can be changed without leaving
the ground state is strongly influenced by the minimal spectral gap of H (s), which is the

*Descriptions of their hardware systems can be found at www. dwavesys . com (last retrieved on June 3, 2025)
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distance betwesen its lowest and second-to lowest eigenvalues across s € [0, 1] denoted
by ~vrr. More precisely, the required annealing time 7" to preserve the ground state with
high probability obeys

1
TH

T

as follows from the adiabatic theorem [69]. Ising models encoding certain NP-hard prob-
lems have been shown to produce exponentially small minimal spectral gaps [71]. Gen-
erally, the minimal spectral gap is influenced by the structure of the problem that the
Ising model encodes [72], which is subject of ongoing research. Making any assumptions
about the spectral gap, or even computing it, is notoriously hard [73].

The physical layout of QA devices is another limiting factor: D-Wave annealers use a spe-
cial connectivity structure for their qubits, which contains only a subset of all possible
couplings between qubit pairs. Their most recent topology is called Zephyr, allowing for
up to 82 densely connected qubits on their Advantage 2 prototype*. A heuristic hybrid
approach can be realized by splitting the initial QUBo instance into smaller sub-problems,
solving each with QA, and merging the sub-results, which allows for larger problem sizes
at the cost of higher running time and weaker optimality guarantees (see, e.g., [74]). Inte-
grated Control Error (ICE) is another phenomenon that distorts the Ising parameters on
the QA chip, resulting in additional noise depending on the qubits’ physical layout and
connectivity [75].

The NISQ Era

At the time of writing, QC devices is still in a phase commonly known as the Noisy
Intermediate-Scale Quantum (NISQ) era. This term, coined by Preskill [20], describes
the situation where quantum devices with hundreds to thousands of qubits are becoming
available, but these qubits are still noisy, meaning they are prone to errors due to imper-
fections in hardware, control systems, and environmental factors. Moreover, full-scale
quantum error correction is not yet feasible due to the resource demands of encoding log-
ical qubits using many physical qubits [76]. As a result, NISQ devices operate in a regime
between classical computation and future fault-tolerant quantum computers.

NISQ devices typically have a few dozen to a few hundred qubits, which is far from the
millions of qubits needed for robust fault-tolerant quantum computing. These qubits do
allow for significant quantum parallelism, enabling certain quantum algorithms to be run
at scales beyond classical simulation [77]. However, qubits and gate operations suffer
from noise, as qubit coherence times are limited, and gate fidelities are far from perfect,
leading to errors in quantum operations. The high level of noise and relatively short
coherence times limit the depth and complexity of quantum circuits that can be reliably
executed [20]. The depth of a quantum circuit is the number of consecutive quantum
gate operations. Error mitigation techniques, such as zero-noise extrapolation [78] and

*https://www.dwavesys.com/media/2uznecks/14-1056a-a_zephyr_topology_of_d-wave_quantum_
processors.pdf (last accessed June 3, 2025)
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error-resilient algorithms, are being developed, but they are not a substitute for full error
correction. As a result, circuits need to be carefully designed to minimize depth (the
number of sequential gate operations) and avoid excessive error accumulation.

One of the defining features of the NISQ era is the use of hybrid quantum-classical al-
gorithms, where a quantum computer performs parts of a computation while a classical
computer assists in areas like parameter optimization or data post-processing. Examples
of this are variational algorithms like VQE discussed in Section 2.4.2 [67, 65]. Assessing
the true performance of NISQ devices is difficult because their computational advantage
is often problem-specific, and their quantum advantage may not translate into practical
utility for real-world problems yet.

Working with Quantum Hardware

Despite numerous persisting challenges discussed before, quantum computers have be-
come more and more accessible over the past decade. In 2016, IBM launched a cloud-
based service, which allows members of the public to access their quantum devices and
execute quantum circuits on them®. In 2024, IBM provided access to 12 devices, each
with a minimum of 127 physical qubits®. In addition, they maintain a Python software
package named Qiskit [79], which allows users to compile quantum circuits and upload
them to a quantum backend (i.e., one of the quantum devices), which executes them and
sends the measurement results back. To synchronize access across many users, Qiskit
bundles a user’s circuits into jobs. If the target backend is busy, jobs wait in a queue until
all preceding jobs have been processed. The number of circuits in a single job, number
of measurements, and the circuit depth is limited. If a backend’s workload happens to
be very high, performing experiments may take a very long time due to queue waiting
times. Qiskit also provides simulators, which perform the unitary operations of a given
circuit classically. Naturally, this is only feasible for circuits involving a small number of
qubits.

While there is a theoretically infinite number of unitary operations, real quantum com-
puters can only realize a very small number of quantum gates. This native set of gates
differs across QC architectures. Any unitary operation outside of this native gate set has
to be factorized into a sequence of gates that the quantum device can realize, which typi-
cally leads to an increase of the number of gates by a factor of around 4 to 5 [80]. A set of
gates that can be provably used to construct all possible unitaries is called universal, such
as the set {H,S,CX, T} [62, Sec. 4.5]. An important theoretical result in this context
is the Solovay-Kitaev Theorem, which implies that any single-qubit gate can be approxi-
mated to accuracy € using only O(log®(1/¢€)) gates from this small set, where ¢ ~ 2 [62,
Sec. 4.5.3]. A universal quantum gate computer needs to have a native gate set that is
universal.

*https://www.ibm.com/quantum/blog/quantum-five-years(lastaccessedJune3,2025)
®https://quantum.ibm.com/services/resources (last accessed June 3, 2025)
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The process of preparing an entire quantum circuit for execution on a particular quan-
tum device is called transpilation and involves, among a few other things, (i) converting
multi-qubit gates into single-qubit and two-qubit gates, (ii) assigning logical qubits to
physical qubits, (iii) converting gates into the native gate set of the target device, and
(iv) optimizing the circuit (e.g., removing redundant gates)’.

Similar to the IBM cloud service, the company D-Wave offers remote access to their quan-
tum annealers via their platform D-Wave Leap®. Unlike GQC devices, quantum annealers
are much less configurable and only solve Ising models, which are fully specified by the
parameters J and h. QuBo problems are converted to their corresponding Ising mod-
els according to Proposition 2.3. Certain parameters, like the annealing time 7" and the
number of final read, can be set manually”.

State of the Art

While all challenges and limitations persists, QC research has nonetheless produced a
range of promising results, which shall be discussed briefly in the following. In December
2024, Google presented a state-of-the-art quantum chip named Willow, which performed
a benchmark computation in under 5 minutes. In contrast, today’s fastest supercomputers
would need around 102° years to do the same'?. At the same time, Google claimed that
Willow achieves the lowest qubit error rate, which constitutes the step in the direction of
large-scale error-corrected QC [81].

QC is used in the simulation of many-body systems in physics [82]. Currently available
hardware is able to simulate systems approaching 100 qubits. While there has been sig-
nificant progress towards achieving a quantum advantage, the problems of noise, gate
errors, and short decoherence times remain as the biggest limiting factors.

In QML research, there is an ongoing race for developing quantum counterparts of clas-
sical ML methods [24]. Examples include, but are by no means limited to, quantum Boltz-
mann machines [83], hybrid quantum autoencoders [84], quantum neural networks [85],
including routines of classical-quantum transfer learning [86], quantum deep convolu-
tional neural networks [87], and long short-term memory quantum neural networks [88].
A popular target domain is image classification using popular benchmark data sets. As a
general trend, research seems to focus on emulating classical ML models and applications.
The results achieved by these approaches is often only only as good as corresponding
classical results, at best [24], and the methods are, again, limited in scale.

Critical voices question the usefulness of classical benchmarks for assessing the perfor-
mance of quantum methods: For instance, many popular classical benchmarks have too
many features and are compressed or reduced in complexity to make them suitable for

"https://docs.quantum. ibm.com/guides/transpile (last accessed June 3, 2025)

®https://cloud.dwavesys.com/leap (last accessed June 3, 2025)

’https://docs.dwavesys.com/docs/latest/c_solver_parameters.html (last accessed June 3, 2025)

Yhttps://blog.google/technology/research/google-willow-quantum-chip/ (last accessed June 3,
2025)
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quantum methods, going against the intended purpose of a benchmark [89]. It was shown
that, in an unbiased evaluation, classical methods that are applied out-of-the-box consis-
tently outperform corresponding quantum models, and that strongly entangling ansitze
do not significantly improve QML model performance [89]. All of this suggests that QC
applications have a long way ahead until they are truly competitive, and that copying
classical methods in the hopes of immediately achieving some kind of quantum advan-
tage is not a promising path to follow.
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3. Feature Selection on Quantum Annealers

While from a practical point of view still in its infancy, QC is a promising future tech-
nology with some strange and unintuitive properties, holding the potential to efficiently
perform computations in exponentially large spaces and speed up algorithms. However,
the natural question arising is how we can use these quantum properties to do useful
things. This part of the thesis attempts to give an (albeit necessarily incomplete) answer
to the following question: How can QC supplement classical methods and algo-
rithms?

Naturally, there are thousands of scientific papers about applications of QC to various
problems across academia. In the context of this thesis, we focus on ML methods to which
we apply QC. To this end, we pick two steps from the ML pipeline shown in Fig. 2.1 and
demonstrate how QC can be included as a powerful building block, achieving some kind
of advantage over purely classical methods. More precisely, in this chapter we will look
at FS, an important pre-processing step, and how we can use AQC to find the optimal
selection within the exponential space of feature subsets.

In Chapter 4, we take a closer look at a particular classification model, the SVM, and
show how both QC paradigms discussed in Section 2.4 can be applied, once for training
and once for deployment. Taken together, these two different applications will serve to
give an impression of how QC can be incorporated into an ML workflow. While the scale
at which QC is applicable today is severely limited by the noisy and imperfect devices
that are accessible to us, considering the quick advances in QC hardware, we can expect
the methods presented here to become more practically relevant in the future.

This chapter is based on the publication [5]. The author of this thesis developed
the idea of using mutual information to perform feature selection using Quso. He
devised the Quso formulation, the method to control the feature subset size and its
correctness proof, and the final QFS algorithm. Further, he designed and conducted
all experiments and wrote the majority of the paper.

As we have seen in Section 2.3.1, FS is an important pre-processing step in ML pipelines,
reducing the number of features and, consequently, the model size and complexity. This,
in turn, makes models both easier to train and deploy, and more interpretable for human
users. At its core, FS is an optimization problem with an exponentially growing search
space: Given n features, the number of possible subsets is 2".
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As shown in Def. 2.3, subsets of n-element sets are isomorphic to binary vectors, which
allows us to view FS as an optimization problem over the set B”. If we manage to formu-
late the objective function of the FS optimization problem as a quadratic function, we can
develop a Quso formulation that can be solved using quantum annealing. While model-
dependent objective functions that may even involve re-training a model (as is the case for
Wrapper methods) cannot be captured faithfully by a quadratic function, filter methods
based on statistical properties of the input data are suitable candidates for Quso.

In the following sections we describe an algorithm for selecting a specific number of
features using a QuBo formulation that can be applied to any combination of statistical
redundancy and importance measures. To this end, we describe in Section 3.1 how a
weight matrix ) can be computed whose optimal solution encodes a feature subset based
on a trade-off between importance and redundancy. In order to control the number of
features in our solution, in Section 3.3 we develop an iterative procedure around our QUBO
formulation that finds the correct balancing factor between importance and redundancy
to produce the desired result. We show by proof that a solution exists for every desired
number of features. Finally, we benchmark the algorithm on different data sets using both
classical and actual quantum hardware to demonstrate its effectiveness.

QuBo-Based Feature Selection

Recall our definition of FS given in Def. 2.10, where we have a data set D = {(z, ;) } for
i € {1,..., N} with n-dimensional features ' C R" and class labels y; C {1,...,C}
foralli e {1,...,N}.

For a given subset of features, we want to (i) maximize the importance of each single
feature for the prediction, and simultaneously (ii) minimize the amount of redundancy
between each pair of features. This way, we obtain a subset that contains both important
features, but is not unnecessarily large by including features whose informative value is
already covered by other features.

Our main information-theoretic tool is Mutual Information (MI), which measures the
amount of information shared between two random variables.

Definition 3.1 (Mutual Information [90]). Let X,Y be two random variables over two
spaces X and Y respectively. Further, let px : X — Roy and py : YV — Roy their
probability mass functions, andpx y : X x Y — Ry their joint probability mass function.
The mutual information between X andY is defined as

px,y (T, y)

(X;Y) = Drr(pxy | px -py) = /J}/pr,y(x,y) 10g<px(9€)pY(y)

> dzx dy,

where Dg1,(+||-) is the Kullback-Leibler divergence, and px - py is the product distribution
defined by (px - py)(,y) = px(z) - py ().

44



3.1. QuBo-Based Feature Selection

Discretizing the Data The calculation of mutual information requires explicit knowl-
edge about the joint probability mass function of features and labels and the correspond-
ing marginals, which are in general difficult to estimate empirically for real-valued data,
as we have to impose an underlying distribution family. Therefore, we map all available
feature values from the data set D into B discrete bins. Specifically, for each separate
feature dimension ¢ we take all //(B + 1)-quantiles for £ € {0, ..., B}, which we de-
note by ¢f. With these, we define bins B! as intervals [¢' !, ¢¢) for £ € [B — 1], and
BP = [¢P7',¢P]. Finally, we set bg = ( for the single ¢ that fulfills xi € BY. Since
the labels are discrete by definition, no binning is necessary in ). This way, we obtain a
discretized data set D = {(b, yi)}z’e{l,.‘.,N} with b{ e{l,...,B}forallje{l,...,N}
andi € {1,...,n}.

The empirical probability mass function after discretization reads
N 1 / /
plb.y) =+ ZAﬂ{be ANy=y'}. (3.1)
(v',y")eD

Consequently, we can approximate the information entropies as

o
Mesy) x> > pxy(by)log (pXY(y)) (3.2)

be{l,...B} y€Y px; (b)py (v)

“ / ﬁXi,Xj (b7 b,)
Lz 25) ~ Z Z thXj(b,b)log g (3.3)

A /
be{l,...,B} b'e{1,...,B} pxi(b)pxj(b)

where we make use of the marginal distributions of the probability mass functions of fea-
ture subsets and labels. These can be computed simply by counting, which yields

yey,
by €{1,...,B}Vk#i,j
Pxoyboy) = > Blby), (3.5)
bre{l,...,B}Vk#i
Px.(b) = D pby), (3.6)
yey

bpe{l,.... BIVk£i

pyw) = D Blby). (3.7)

bie{l,...,B}Vk

Discretizing allows us to approximate the MI values while greatly simplifying the estima-
tion procedure, as no assumption on the underlying probability distribution of the data
is required. Additionally, the estimation is consistent, which means when the number of
bins approaches infinity the true MI between continuous features will be recovered [91,
Theorem 3.2]. Using these tools, we compute an importance vector I and a redundancy
matrix R from our (discretized) data.
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Importance The importance vector I € Rfj, contains the elements
I =1(z;;y) > 0Vi € {1,...,n}, (3.8)

and represents the MI between each separate feature and the class label y. As we wish to
retain as much information about the label as possible in order to perform classification, it
is a useful measure of importance for the purpose of FS. As the QuBo energy is minimized,
importance appears with a negative sign in Eq. (3.10).

Redundancy The pairwise redundancy matrix R € Rj*" contains the elements

Rij = I(.Ti;l’j) >0Vi,j € {1, e 7n}, (3.9)

which is symmetric and positive semidefinite by definition. The resulting matrix collects
the mutual information between each pair of individual features, and therefore measures
their redundancy, as a high value suggests a large overlap in their information content.
Weset R;; = Oforalli € {1,...,n}, as we wish to ignore each feature’s redundancy with
itself. As we want to minimize redundancy, R appears with a positive sign in Eq. (3.10).
To simplify our notation, we omit the dependence of I;; and I; on the input data and
discretization procedure, however, it is important to carefully cosider the discretization
method as a free parameter.

QuBo Formulation Finally, to arrive at a QuBo formulation, we define

Qz;a) = —aZIZ-zi +(1—a) Z Rijziz;
i=1

ij=1
=—az'I+(1—«a)z"Rz (3.10)
= 27Q(0)z,

where the user-defined parameter a € [0, 1] balances the influence of importance versus
redundancy. The weight matrix Q(«) can be defined as Q(«) = (1 — o) R — o diag[I],

whose elements read
Qij(a) = (1 —a)Ry; — al{i = j}1;. (3.11)

The solution of this QUBO instance represents the optimal subset of features: From the
solution bit vector z* we can obtain the set of feature indices through ¢,, (2*) (see Def. 2.3).
See Fig. 3.1 for a schematic view of the entire FS process using this method.

Feature Subset Size

Typically in FS, we want to control the number of features we want to select. We can
enforce this by adding a constraint to Eq. (3.10), penalizing any number of result bits
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n

calculate R combine solve
Pairwise n —)|0|1|0|0|1|
Redundancy 2*

Feature mask
n

[TTTT] o
D I QUBO Problem

Data Importance

Figure 3.1.: QFS pipeline: Redundancy R and importance I are computed from a discrete data
set (see Egs. (3.8) and (3.9)). Both metrics are balanced with a factor «, yielding a
QuBo matrix (Eq. (3.10)) whose minimizing binary vector z* indicates the feature
selection. Source: [5].

different from k. To this end, we could, in theory, add a penalty term A ((>; z;) — k)?
with A > 0 to Q(z, «), which is only equal to zero for a selection of exactly k features
(compare Section 2.2). The problem can then be solved to obtain a solution with k£ =
127115

However, two challenges arise when using this approach. The suitable choice of A\ is
not obvious and depends on the magnitude of Q(z, «): If chosen too small, the imposed
constraint might be ignored for certain solutions, leading to constraint violations. In
contrast, if chosen too large, it may lead to a very large value range and, consequently, to
loss of precision, as having both very small and very large elements in the weight matrix
limits the amount of scaling to amplify meaningful differences between loss values — this
problem is discussed in much more detail in Chapter 6. Moreover, it is not clear whether
a feasible solution to the constrained problem can be found at all in the first place.

We employ an alternative strategy to specify the number of selected features. Instead
of using penalty terms, we exploit the parameter «, which by balancing the influence
of importance and redundancy influence the number of 1-bits in the solution. This can
be seen by considering the smallest and largest possible values of o € [0, 1]: If we set
a = 0, we put full emphasis on redundancy, and all diagonal entries of Q(0) become
0. Naturally, both the empty feature set (z* = 0") as well as any single feature (z* =
e!'Vi € {1,...,n}) is least redundant. Conversely, if @ = 1, the resulting problem is
linear, and all coefficients are linear, so that all features (z* = 1) are selected as the
optimal solution (bit vector 1"™). We observe that by varying « from 0 to 1 the number of
bits || z*||; increases monotonically in steps of one from 0 to n. This observation suggests
that there is an « value that results in a subset of size k for any desired k € {0,1,...,n}.
Proposition 3.1 proves that this is indeed true.

Proposition 3.1 (Existance of « [5]). For all Q(-, «) defined as in Eq. (3.10) and k €
{0,1,...,n}, thereis an v € [0, 1] such that z* € S*(Q(«)) and [|z*||; = k.
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Figure 3.2.: Graphs of Q% used in the proof of Proposition 3.1, for k € {0,...,n} withn = 5.
Redundancy and importance values were randomly sampled. Source: [5].

Proof. For ease of notation, we define I(z) = Iz and R(z) = zTRz just in the scope
of this proof, where I and R are defined as in Egs. (3.8) and (3.9), computed from an
arbitrary but fixed data set with n features. Recall that R(z) > 0 and I(z) > 0 for
all z € B” due to non-negativity of mutual information. Firstly, note that for « = 0
both the zero vector 0" and all unit vectors e are optimal w.r.t. Q(-,0), as Q(0,0) =0
and Vi € {1,...,n} : Q(e;,0) = R;; = 0 by definition of R. This covers the cases
k = 0and k = 1. Further, if & = 1 we have Q(2,1) = —1(2) = — X ;cq1n Li%i,
which is trivially minimized by the one vector 1", covering the case k = n. Now, for all
k € {0,...,n}, consider the functions

Q<i(a) = min Qu(2) st. [|z]; < k. (3.12)

These functions are piece-wise linear and strictly decreasing in « (see Figure 3.2), due to
0Qn(2)/0a = —(R(z) + I(2z)) < 0 and non-negativity of R(z) and I(z). This implies
further forall « € [0,1] and k € {1,...,n} that

min R(x) < min R(z 3.13
zeB” ( )_ zeB" ( ) ( )
llzll; <k—1 lzll, <k
max I(z) < max I(z). (3.14)
z€B” zeB™
2]l <k—1 =l <k

This immediately implies that for any k& < &’

Q%4(0) < Q% (0) (3.15)
QL(1) 2 QL (1), (3.16)
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which further implies that, unless Q% , and Q% ,, are equal, there is at least one point 3
such that for all o/ > 3 we have Q% (/) < Q% (/) as a consequence of Q% and
Q* . being non-increasing, from which follows the proof. If indeed Q% and Q% ,, were
equal, both binary vectors z and 2’ with ||z||; = k and 2’|, = k’ would be optimal,
from which the proof still follows. O

This result shows that additional constraints on the QUBO instance are not required to
control the number of features, as there all suitable choices of « for every possible k. The
problem that remains is finding the specific value of a.

The QFS Algorithm

Proposition 3.1 lets us devise an algorithm that, given pre-computed R, I and k, returns
an o such that an optimal feature subset vector z € Q*(a*) has exactly k non-zero
entries. For this purpose, we introduce

Qi) = _min Q=) (3.17)
st. |lzll, =k

with 0 < k < n, ie., the minimal function value of Q(z,«) for a given o when the
number of ones in the solution is restricted to k. We denote the minimal energy wrt. k
(i-e., the globally minimal energy) by

Q*(a) = min Qi (a). (3.18)

If we have an oracle for Q*(«) that returns a global optimum for any Q(+, «), an appro-
priate value for a* can be found in O(logn) steps through binary search. Note that the
value of o* is not necessarily unique.

As an additional step that proved to be practically relevant, we introduce a threshold
€ > 0, such that Q;;(«) as defined in Eq. (3.11) is set to some small positive value p > 0
if al; < eforalli € {1,...,n}. Thatis, we change Q;;(c) to Q;;(cv, €, 1) with

I ifi=7Aal;<e
Qij(a, e, ) = { (3.19)

Qij(a) otherwise

for arbitrary but constant values of € and p. We observed that importance values very
close to zero have virtually no influence on the function value, and the solvers tended
to include or exclude the concerning features randomly. As we want to minimize the
number of necessary features, we add an artificial weight u to exclude such features from
the optimal solution, avoiding randomness. The exact choice p is not important as long
as it is positive, which ensures that the respective feature will never be part of an op-
timal solution — see [92, Lemma 1.0]. The complete method is given as pseudocode in
Algorithm 3.1.
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Algorithm 3.1 QFS Algorithm: Binary search that, given an integer k, finds a value o*,
such that the optimal solution of a feature selection QuBo problem with matrix elements
Qij(a*, €, 1), Eq. (3.19), contains k features. Source: [5].
Input: R I ¢ uk
a0
b1
a <+ 0.5
2" Q" (a, € 1)
Ko |2,
while k&’ # k do
if ¥ > k then
b+ «a
else
a4 «
end if
a <+ (a+b)/2
2" Q*(a, € 1)
Ko 2,
end while
return o, z*

3.3.1. Overview of Similar Approaches

There are several approaches that use similar techniques for performing FS, which shall
be briefly compared to QFS. In [93], a feature ranking is computed by formulating FS as
a quadratic programming (QP) task. To obtain the ranking, a real-valued weight vector
is obtained by solving this proxy problem through dimension reduction. The QP task
is only a relaxation of the corresponding QuUBo problem with binary weight variables
which we discuss in this chapter. As it is not guaranteed that the relaxation yields the
exact QUBO solution [42], this approach is purely heuristic. In prospect, QUBoO becomes
tractable through quantum computation, which is why QFS does not need to resort to
approximations or relaxations in order to become feasible.

As discussed earlier, resorting to a penalty term A to restrict a solution to k features intro-
duces several problems. Previous Quso formulations based on redundancy and impor-
tance do exist [94], but rely on exactly this strategy. Choosing the value of A is not trivial,
and a very large value can drastically increase the dynamic range of the Quso weight
matrix (see Chapter 6). QFS weighs redundancy and importance against each other in
order to fix k, rendering any additional constraints obsolete.

In [95], Grover’s algorithm is applied to an oracle that yields the improvement in accuracy
by adding or removing single features. This constitutes a quantum version of a simple
sequential wrapper approach, improving the asymptotic runtime for greedily selecting
the next feature in sequence, due to the theoretical property of Grover’s algorithm to find
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a function’s minimum or maximum with logarithmic time complexity. On the one hand,
Grover’s algorithm is not widely applicable to a large number of features in the NISQ era.
On the other hand, the solution quality is only as good as the classical greedy algorithm.
As Grover’s algorithm is probabilistic in that it returns the correct minimum/maximum
only with a certain probability, the result may be even worse than for the classical greedy
approach.

Experimental Evaluation

So far, QFS has only been shown to work in theory. The following sections detail four
different experiments to evaluate the performance of QFS. We use six evaluation data sets,
both synthetic and taken from real-world data sources, which are listed in Table 3.1, and
which shall be described briefly:

« mnist [96] contains 28 x 28 gray-scale images of handwritten digits. Each feature
(i.e., each pixel) can take integer values from 0 (black) to 255 (white). We divided
these values by 255 to rescale the features to the range [0, 1]. There are ten classes,
one for each digit. This data set is challenging due to its high dimensionality.

« ionosphere [97, 98] contains measurements of electrons in the ionosphere captured
by 16 antennae in north-east Canada. The resulting 34 features take values in
the range [—1, 1]. The binary label indicates the presence of evidence of certain
structures in the ionosphere.

» waveform is a synthetic data set first introduced in [99]. It contains short time
series of length 21, each containing a random linear combination of two of three
triangular base waves with added Gaussian noise. The (3) = 3 combinations of
two out of three base waves provide the class label. There is considerable overlap
between classes, making the correct classification challenging.

« madelon consists of 5-dimensional points sampled around the corners of a hyper-
cube, with each corner randomly representing one of two classes. In addition, 15
linear combinations of these five features as well as 480 random irrelevant features
(“probes”) without predictive power are included, leading to 500 features in total.

+ synth_10 is another synthetic data set with n = 10 features and a binary label
that indicates if a linear combination of a subset of four specific features is above
a fixed threshold. We generated the data set by first randomly choosing di,sr = 4
indices of informative features Z C {1,...,n} without replacement, with n = 10.
We then sampled two random correlation matrices Ciyr and Ciest with dimensions
dinf X ding and d, —inf X dp,—inf respectively, using the algorithm in [100, Sec. 3.2] with
parameter 3 = 1. Next, we sample i.i.d. p; ~ N(0,10) and o; ~ exp(N (0, 1)) for
i € {1,...,n}, such that pinr = (;)iez and frest = (Mj)jezc’ and o and Ot
respectively (with 7t = {1,...,n} \ Z). From this, we obtain covariance matrices
Dinf = ainfa'iTnf ©® Ciyf and X,q analogously. Finally, we sample a data point @

51



3.4.1.

3. Feature Selection on Quantum Annealers

Table 3.1.: Data sets used for numerical experiments: Number of features n, classes ¢, and number
of samples S given. Source: [5].

Name References n c S

mnist [96] 784 10 70000
ionosphere [97, 98] 34 2 351

waveform [99, 98] 213 5000
madelon [101, 98] 500 2 2000
synth_10 (5] 10 2 10000
synth_100  [5] 100 2 10000

with 7 ~ N (ping, Zing) and ¢ ~ N (prest, Drest). We generate the labels by
sampling w € R%f with w; ~ N(0,1) iid. foralli € {1,..., diy}. Then, for
each data point « we set the label to y = 0 if wTz < Ez[w'@|, andtoy = 1
otherwise, which yields, in expectation, an equal class distribution.

« synth_100 is generated using the same procedure as synth_10, but with n = 100
and d;,¢ = 10.

For the discretization step described in Section 3.1, we choose the number of bins B = 20
as a tradeoff between accuracy and computational speed. We further set ¢ = 10~% and
p = max; jeq1,..n} Qij(a) in Algorithm 3.1. Both parameters were determined empiri-
cally by careful preliminary testing before performing the main experiments.

The first experiment in Section 3.4.1 serves as a proof of principle, in which we evaluate
whether QFS can find any useful features at all. To this end, 30 features from the mnist
data set are selected through QFS, and a range of 1-vs-all classifiers are trained on all
digits. The performance of these classifiers is then compared to those trained on 30 ran-
dom features, and on all available features, respectively, to assess the usefulness of the
selected features. The second experiment in Section 3.4.2 constitutes a wider empirical
comparison of various combinations of commonly used FS methods and ML models with
the goal to show that QFS is competitive. In a third experiment in Section 3.4.3, QFS is
applied in a more application-oriented setting, using the selected features as a means of
lossy data compression. This is achieved by interpreting the reduced feature space as a
latent representation, training a convolutional neural network to reconstruct the origi-
nal features, and evaluating the quality of the reconstruction. Finally, we use quantum
hardware in Section 3.4.4 to solve two exemplary feature selection QUBoO instances for
QFS, demonstrating that this method can indeed be used with currently available NISQ
hardware.

Feature Subset Quality

The first experiment serves to verify that QFS is actually able to find an informative subset
of features at all. For this purpose, we take the mnist data set and run Algorithm 3.1 ten
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Figure 3.3.: Feature subsets found through QFS on all separate digits of the mnist data set. Black
pixels represent selected features. Source: [5].

times with £ = 30 such that we use about 3.8 % of the original 784 features (i.e., pixels).
To solve the QUBO instances classically, we use the software package gbsolv [102]. For
the redundancy measure, the pairwise MI matrix over all features is used, as specified in
Eq. (3.9). As importance for digit d, the MI between the features x; and a binary variable
1{y = d} is calculated according to Eq. (3.8). This yields ten feature selections, one for
each digit, which are used to perform a 1-vs-all classification. As a method to quantify
whether the features selected by QFS are informative or not, a RF classifier is trained
on these features, and its accuracy computed. For comparison, the accuracies of two RF
classifiers that have been trained on (i) the whole feature set and (ii) a set of randomly
selected features (uniformly sampled from the set of k-element subsets of {1,...,n} for
each digit) are reported, too. Each RF is composed of 100 estimators, each in turn a DT
of maximal depth 5, using a maximum of 5 features when searching the best split. These
restrictions can be justified by a need to limit the model size, which is a common objective
in applications that use FS. For all classifiers, the Python implementation provided by
scikit-learn [103] is used.

For the mnist data set, the selected features correspond to pixels. We show the pixels
selected by QFS in Fig. 3.3. Concerning the RF models, we perform 10-fold cross valida-
tion and report mean and standard deviation of the classification accuracy, visualized in
Fig. 3.4. For comparing randomly chosen feature selections, the cross-validated accuracy
averaged over 5 random subsets is reported, resulting in mean and standard deviation
over 50 runs in total.

The RF model consisting of the constrained estimators performs best on all digits using
the optimal feature subset found through QFS, which confirms that this method indeed
finds informative features that are useful for classification. Notably, the models trained
using the QFS features outperforms not only the random subset models, but also the
models that had access to all features. A restricted number of features per split in the
base estimators leads to a higher chance of picking non-informative features, illustrating
that FS as a pre-processing method can drastically improve model training.

Cross-Model Comparison

The second experiment serves to give a wider comparison of QFS to other feature selec-
tion methods. To this end, the accuracy of various classification models trained on the
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Figure 3.4.: Cross-validated accuracy of binary Random Forest classifiers of each separate digit
of the mnist data set. One standard deviation is indicated. Source: [5].

respective feature subsets are compared in analogy to the previous experiment in Sec-
tion 3.4.1.

This time, Algorithm 3.1 is applied to 5 different data sets to obtain feature subsets of fixed
sizes k. For madelon and synth_100 the known number of informative features is known,
while for the remaining data sets we chose the feature subset sizes arbitrarily in varying
percentage ranges of the total number of features. Thus, we arrive at 30 features (3.8 %)
for mnist, 5 features (14.7 %) for ionosphere, 20 features (4 %) for madelon, 20 features
(5 %) for synth_100, and 5 features (23.8 %) for waveform.

To evaluate the feature subset quality, we compare QFS to three other heuristic FS meth-
ods, namely 1. a feature ranking obtained from the Euclidean norm over the coefficients
of n 1-vs-all Logistic Regression (LR) models, 2. a feature ranking obtained from the
impurity-based feature importances given by an Extra Tree (ET) classifier with 100 esti-
mators, and 3. Recursive Feature Elimination (RFE) [104] performed on a DT of maximal
depth 10. The resulting subsets of features are then used to train 5 classification mod-
els, namely 1. an Artificial Neural Network with a single hidden layer of |v/k] neurons
and Rectified Linear Unit (ReLU) activation, 2. 1-vs-all Logistic Regression, 3. a single
DT, 4. a RF with 100 DTs, and 5. a Naive Bayes classifier with Gaussian prior. For better
comparability, the number of hidden layers in the ANN is chosen such that dependency
between the number of parameters and selected features k is linear. Both the ANN and
the LR have a fixed budget of 1000 learning iterations. Again, the Python implementa-
tions provided by scikit-learn [103] are used for all models and FS methods. On every
model a 10-fold cross validation is performed, and mean and standard deviation of the
classification accuracy is reported.
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The results are visualized in Fig. 3.5 and show that QFS compares generally favorably
among FS methods: QFS is mostly within the standard deviation of the top-performing
FS methods. While other methods seem to perform worse on specific data sets (e.g., LR
on mnist, and RFE on ionosphere), QFS is consistently among the best algorithms, a
notable outlier being the ANN classifier on waveform, which did not properly converge
on the selected feature subset. The RFE method using decision trees often leads to better
accuracies, but comes at the cost of much higher computation time, owing to the fact that
it is a wrapper method which requires the model to be re-trained in every iteration, which
is very resource-inefficient for complex models.

For madelon and synth_100 the ground-truth informative features are known, which can
be exploited to evaluate the distance between the truly optimal feature subset and the
subset found by each FS method. As a distance measure, we use the edit distance between
pairs of feature subsets, which is the number of features that need to be swapped in order
to turn one subset into the other - this is equivalent to the Hamming distance between
the binary feature indicator vectors, divided by two. The subsets generated by each FS
method used in this experiment are represented by nodes in an undirected graph, the
edge weights giving the pairwise edit distances. If two or more nodes have distance 0,
they are represented as clusters. The resulting graphs are shown in Fig. 3.6.

QFS is able to find all informative features for synth_100, and is closest to ground-truth
on madelon among all other methods except for the ET classifier ranking, which is able to
find the ground-truth features in both cases. In this experiment, the ET classifier ranking
is particularly effective, producing the optimal feature subsets on both data set. How-
ever, as a wrapper method, it comes at a much higher computational cost than the other
methods. The LR ranking is furthest from ground truth, and also furthest from all other
methods, suggesting that LR is a too simple model for these data sets. RFE is behind the
performance of both QFS and ET, being unable to find ground truth in both cases. This
result demonstrates that MI is a useful measure of redundancy and importance in QFS, as
it produces feature subsets close or identical to ground truth.

Lossy Compression with an Autoencoder

A different perspective on the selection of important features is the removal of unim-
portant features. This implies that QFS can be used as a type of lossy compression by
computing an optimal feature subset S and discarding all features i ¢ S. Feeding this
compressed representation into a suitable ML model, we can attempt to reconstruct the
original features [105], as shown schematically in Fig. 3.7. This third experiment evalu-
ates this idea of lossy compression empirically.

For our experimental setup, we perform QFS on mnist with £ = 25 (i.e,, 3.19% of all
image pixels). The resulting subset S of pixel positions can be interpreted as a type of
latent space, i.e., a compressed data representation similar to representations obtained
from Principal Component Analysis (PCA) [9, Eq. 3.48] or an autoencoder [106].
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ious feature selection methods on three different data sets. One standard deviation
is indicated. Source: [5].
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(a) madelon (b) synth_100

Figure 3.6.: Edit distances between feature subsets found through the different FS methods on
data sets madelon and synth_100, for which the ground truth informative features
are known. Nodes represent FS methods, edge weights give the edit distance between
feature subsets. Ground truth (GT), LR ranking (LR), ET classifier ranking (ET), RFE
and QFS are shown. Methods within dotted circles have distance 0. Source: [5].
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Figure 3.7.: Experiment 3: Compression and decompression pipeline using QFS with k£ = 25 and
a convolutional decoder. Source: [5].

The resulting compressed representation of the digits is fed into a Convolutional Neural
Network (CNN) that projects the images back to a size of 28 x 28 while minimizing the
difference between reconstruction and original as a loss function. Accordingly, the CNN
architecture consists of a linear input layer with & inputs and 392 outputs. The output is
reshaped to 8 channels of size 7x 7. Two sequential 2D transposed convolution operations
interspersed with ReLU activations serve to first inflat the images to 16 x 14 x 14 as
an intermediate representation, and finally to 1 x 28 x 28, which is the original image
size. A sigmoid function is applied to the output in order to ensure that pixel values are
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Figure 3.8.: Visual comparison of mnist samples reconstructed from 25 pixels at fixed positions
selected through QFS. Source: [5].

between 0 and 1. As the loss function, the MSE between the original samples  and the

reconstructions is used: 1

784
where fg is the model function with weights 8, and g the sub-vector of @ containing
only the features in S found through QFS. The model is trained for 1000 epochs with
batches of size 250, using the Adam optimizer [107] from PyTorch [108] with a 1cycle
learning rate scheduler [109] using a maximum learning rate of 0.01.

|z — fo(ws)ll; — min, (3.20)

After training, the CNN achieves a MSE of 21.7389, corresponding to an average squared
deviation per pixel of 0.0277. As a visual reference, Fig. 3.8 shows 20 random mnist
samples on the left, and their respective reconstructions on the right. The reconstructed
samples are visually very similar to the originals, suggesting that the features (i.e., the
pixel positions) found by QFS indeed contain useful information about the samples that
help the CNN model to infer the values of neighboring pixels in the image.

QFS on Quantum Hardware

Up to this point, only classical QuBo solvers have been used for performing QFS. In this
fourth experiment, QFS is applied using actual quantum hardware as the Quso oracle in
Algorithm 3.1. To this end, we use both a quantum annealer as well as a quantum gate
computer to test the effectiveness of both major paradigms of QC for this task.

We construct the QFS QuBo instances for three data sets, ionosphere, waveform, and
synth_10 as before, but solve them using QA on a D-Wave quantum annealer and VQE
on an IBM gate quantum computer (see Section 2.4.2). In preparation for this experiment,
first an entirely classical run of Algorithm 3.1 is performed to obtain values for « for a
predefined number of selected features k. While in principle, this search for « can be done
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Table 3.2.: Number of features n, selected features k, and resulting value of o given by Algo-
rithm 3.1. Source: [5].

data set n k «

ionosphere 34 5 0.90625
waveform 21 5 0.78125
synth_10 10 4 0.87500

on quantum hardware as well, pre-computing « classically reduces computation time
significantly without changing the experiment’s result. Saving computation time on NISQ
quantum gate hardware is critical, as IBM imposes a hard time limit on their devices. For
the same reason, only the synth_10 data set for the VQE algorithm is considered.

The determined « values are listed in Table 3.2 along with the chosen number of selected
features k. On this basis, QUBo instances for each data set are computed and solved on
both hardware platforms.

The D-Wave quantum annealer Advantage 5.1 operating on 5627 qubits was accessed via
D-Wave’s cloud service Leap'!. To perform QA, the implementation provided by ocean'?
with the DWaveSampler and default parameters was used to evaluate all three QuBo in-
stances for the respective data sets. A total number of 1024 samples were obtained per
QuBo instance, each representing an estimate of the solution. Additionally, the same
experiment was repeated using Simulated Annealing, again using D-Wave’s Python im-
plementation contained in ocean with default parameters.

The IBM quantum gate computer ibmgq_ehningen, on the other hand, operates on a Falcon
r5.11 processor with 27 qubits'® and is accessible via IBM’s cloud service IBM Quantum*.
To perform the experiment, Qiskit Runtime’s default VQE implementation [79] with the
Simultaneous Perturbation Stochastic Approximation (SPSA) optimizer [110] was run for
32 iterations using Qiskit’s default parameters. A Pauli Two-Design [111] with four layers
was used as the parametric ansatz. As mentioned earlier, computations on the quantum
gate hardware is time-consuming and, at the same time, strictly limited. For this reason,
only the QuBo instances for synth_10 were evaluated, again taking 1024 samples from
the resulting quantum circuit.

QA results are shown in Fig. 3.9, which shows all 1024 samples sorted in ascending order
of energy, such that the lowest measured energies are on the left, and mean and standard
deviation is reported over the sorted sequences of 16 runs. For better comparison, the
globally optimal energies were found by brute force, and are shown as horizontal lines.
On the right, the number of times each solution bit was measured as 1 across all shots

"https://cloud.dwavesys.com/leap (last accessed June 3, 2025)
https://docs.ocean.dwavesys.com/en/stable/index.html (last accessed June 3, 2025)
Bhttps://waw. fraunhofer.de/content/dam/zv/de/institute-einrichtungen/Kooperationen/

kompetenznetzwerk-quantencomputing/brochure_fraunhofer-v10.pdf (last accessed June 3, 2025)
14https://quantum—computing. ibm.com
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is shown. As usual, the bits correspond to feature indices for QFS. Again, mean and
standard deviation over 16 runs is reported. The color of each bar indicates whether the
corresponding global optimum of the respective bit is 0 or 1. The sequence of optimal bits
corresponds to the optimal feature selection for our application. Fig. 3.10 is analogous to
Fig. 3.9, showing the results obtained through Simulated Annealing.

The histograms show a clear correspondence between feature optimality (bar color) and
the number of occurrences, which indicates that QA is able to find the global optimum in
a certain fraction of samples. As the number of qubits increases, this correlation gets less
and less pronounced. The optimum was found in 10.78 £+ 5.12% for synth_10, 0.18 £+
0.18% for waveform, and only a single time across all 16 runs for ionosphere. Simulated
Annealing, in contrast, finds the correct bits with higher probability, even for data of
higher dimension: The optima are found in 100.00+0.00% of shots for synth_10, 20.39+
1.40% for waveformand 21.0441.02% for ionosphere. From this can be deduced that the
use of NISQ hardware compromises the solution quality. This may be due to a a number of
causes, such as loss of precision when loading the QuBo weight matrix onto the quantum
annealer, or noisy read-out from the quantum device.

The single result for VQE is shown in Fig. 3.11, analogous to Fig. 3.9, with mean and stan-
dard deviation obtained from 5 runs. In contrast to QA, this result is much less promising,
showing no immediate correspondence between the optimal bits and number of occur-
rences. Only in 0.14 +0.08% of measurements was the global optimum found. This leads
to the assumption that hardware noise, as well as the low number of optimization steps
that were used due to long run times, had a detrimental impact on the performance. Possi-
bly VQE could perform better for longer run times and less noisy hardware. Importantly,
the VQE results are different from the D-Wave results in that the 1024 VQE samples were
all taken from one optimized circuit, while each shot represents one approximation run
to find the underlying QFS optimum on the QA device.

All in all we conclude from this experiment that near-term quantum devices can in princi-
ple be used for QFS today. However, best performance is to be expected on low-dimensions
data using special-purpose hardware tailored for QUBo, like quantum annealers.

Concluding Remarks

This chapted has described the QFS algorithm for performing feature selection based on
a QuBo embedding, which can be solved on both classical and quantum hardware. It
uses mutual information as a basis for measures of importance and redundancy, which
are balanced using an interpolation factor a.. It was shown that QFS allows the selec-
tion of feature subsets of any desired size k, as was proven theoretically, without ad-
ditional constraints on the solution space, which could negatively impact the solvabil-
ity of the QuUBo instances. In a range of experiments the framework’s effectiveness was
demonstrated by comparing different common features selection methods and the result-
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ing performance on different ML models, as well as a practical application for lossy data
compression.

Another experiment was successfully performed on actual quantum hardware, further
demonstrating that QFS is NISQ-compatible, at least on low-dimensional data and using
QA. The feasability is dictated by available hardware, but it can be expected that QFS
scales in accordance with future quantum computing developments.

The choice of MI as the basis for measures of importance and redundancy is flexible: As
Proposition 3.1 is valid for general I and R with non-negative entries, the proof holds
for any combination of importance and redundancy measures, and Algorithm 3.1 can be
applied accordingly. Possible alternative choices include entropy, Pearson correlation, or
other information-theoretic measures. Potentially, expert knowledge, if available, can be
incorporated by assigning manual, application-specific importance weights, or forbidding
certain pairs of features through manual penalty weights.

FS serves as the first example of an application of QC - more precisely, Quantum An-
nealing — to a problem arising in ML. In Part IV we will see several other examples of QA
solving interesting and non-trivial optimization problems. A central advantage of QA is
its potential to optimize over the entire search space at once, converging to the globally
optimal solution, given the annealing process is carried out sufficiently slowly and the
noise caused by imperfect hardware does not skew the energy landscape too much. In
Chapter 6 we investigate the last point thoroughly and propose methods to avoid such
errors.
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Figure 3.9.: Histograms of samples from the D-Wave quantum annealer performing QFS on three
different data sets. Left: Shots sorted by energy (mean and standard deviation over 16
runs), minimal energy shown as horizontal lines. Right: Prevalence of solution bits,
optimal bits shown in yellow. Mean and standard deviation over 16 runs is reported.
Source: [5].
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Figure 3.10.: Same results as in Fig. 3.9, but using SA instead of QA. Source: [5].
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As we have seen in Section 2.3.2, the SVM is (in its original form) a classification model
building on the idea of separating a data set containing points from two classes with a
hyperplane, such that all points of class —1 are on one side, and all points of class +1 are
on the other. In addition, the hyperplane is chosen such that the distance to the nearest
points is maximized, hoping to achieve best possible generalization.

SVMs can be trained by solving the optimization problem in Def. 2.11, e.g., using quadratic
programming for its primal or dual formulation [9]. The resulting parameters w and b are
then used to compute the prediction of new data points. In this chapter we take a different
route by considering different strategies to employ QC. As discussed in Section 2.4, QC
with its two paradigms of AQC and GQC can be used as a tool for both optimization
and computation. Therefore, we will apply both to different aspects of the SVMs, namely
training and deployment.

In Section 4.1 we formulate the problem of SVM training as a QuBo problem, which al-
lows us to find the set of support vectors from a data set of labeled points using a quantum
annealer. To this end, we need to tweak the optimization problem in Def. 2.12 to be com-
patible with binary optimization. In Section 4.2 we use GQC to embed a trained SVM
model with parameters w and b onto a quantum circuit, which allows us to compute
predictions given new data points. Notably, if this circuit is evaluated repeatedly, the
prediction converges to the classical model’s output. This is valuable, as the SVM is a
well-understood model with many favorable theoretical properties, which the quantum
version preserves. Taken together, this chapter provides the building blocks for a quan-
tum classification pipeline, which constitutes a step in the direction of quantum-ready
ML.

This chapter is based on publications [7, 2]. Section 4.1 uses the SVM formulation
from [7], which the author of this this thesis developed. Section 4.2 is based on [2],
for which the author jointly developed the RQSVM model, implemented an efficient
simulator, and conducted and documented experiments.
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SVM Training through Quantum Annealing

Recall Def. 2.12 of the dual SVM optimization problem given in Section 2.3.2, which we
shall re-state here for simplicity:

Definition 2.12 (Dual SVM [9]). Let D as in Def. 2.11, withy € RY the vector containing
all y; in D, X the N x d data matrix as defined in Def. 2.9, and K = (X )Tp(X) the
kernel matrix w.r.t. some feature map . The dual form of the SVM training problem given
in Def. 2.11 is

1
Maximize 1o — o™ (yy" © K)a
a 2
st0<aq <CVie{l,...,N},
aly =0.

For simplicity, we focus on the linear SVM by fixing the feature map ¢ to the identity
function, leading to ' = X T7.X being the Gram matrix. If we take a closer look at the
equation, we find that it has strong similarity with a QuBo problem, although with a few
differences, namely

« we have a maximization instead of a minimization problem,
« the values a that we optimize are real-valued, not binary, and
« there are additional constraints on c.

Firstly, we can flip the sign to convert a maximization to a minimization problem. The
second point, however, is more challenging, because quantum annealers can only opti-
mize over binary variables z € BY. To resolve this, we can take a radical approach and
binarize the elements of o and simply set o; = C'z;, meaning that «; can take either 0
or C instead of being a real value in the interval [0, C]. By doing this, we automatically
inforce the first set of constraints, namely 0 < «; < C. The second constraint, aTy = 0,
can be inforced by adding a penalty term

AMaTy)? =X aTyy'a, (4.1)

which is 0 when the condition is fulfilled, and assumes a positive value otherwise. We
have to choose a value A > 0 that is large enough to make any solution that violates the
constraint non-optimal (see Section 2.2).

Combining these ideas, we arrive at the following QuBo formulation of the binarized SVM
learning problem:

Definition 4.1 (Binary QuBo-SVM [7]). Let C, A > 0, and let X € RN*? gndy € SV.
The Binary QuBo-SVM can be trained by solving the QuBo problem given by

1
fsvm(z;CoN, X, y) = —1}\,z + CzT (2(ny oK)+ )\ny>z.
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Given a minimizer z* € BY, the parameters w and b used for the prediction function (see
Eq. (2.11)) are then given by

N
w=C-(2"0y)"TX = CZz;-"yiaziT

i=1
b=wTx'm —y; foranyic {1,...,N},

where x' is the i-th row of the data matrix, i.e., the i-th data point as a row vector.

For greater numerical stability, b should be computed over several (or all) indices ¢ and
the results averaged. Conveniently, the solution vector z* to the QuBo problem is at the
same time an indicator vector of which data points are support vectors, i.e., which vectors
contribute to the decision boundary.

Increasing Precision

Since the initial publication of the binarized SVM [7], a few authors have used the
same technique independently and extended it to allow for greater precision by
means of representing each «; with more than one qubit [112, 39]. For complete-
ness, we elaborate on these ideas and include them in our experimental evaluation.

The simplifying assumption of o; = C'z; is quite radical in that it allows no gradation
between being no support vector at all (o; = 0) or being misclassified (o; = C'). From
another point of view, data points can either not contribute to the optimal w at all, or
equally with weight C.

We can soften this restriction by encoding the weights «; using £ > 1 bits instead of
only one. Assume we have a vector p = (p1,...,pr)T € Roy with ||p|; = C. Then we
can represent each «; as a sum Z§:1 pjzij with z; ; € BVYj € {1,...,k}, such that for
each combination of bits that sum is bounded between 0 and C. To do this for all «;, let
now 2 = (21,1, .-, 21k, 22,15, 2Nk)T € BVF be a binary vector where the & bits for
each a; are simply concatenated. We can construct a matrix that maps this k-times larger
vector to an /NV-element vector utilizing the Kronecker product:

P =1Iy®pT e RVXVF, (4.2)

This way, we obtain & = Pz € [0,C]" for any p € R, with ||p|, = C. Using Pz as
a replacement for o in Def. 4.1 yields the following definition.

Definition 4.2 (k-bit QUBO-SVM). Let C, A > 0, X € RN*4 and y € SN as before.
Further, let p € R¥ with ||p||, = C. The k-bit QUuBO-SVM can be trained by solving the
QuBo problem given by

1
foomp(z;C N, X, y,p) = -1 Pz + 2TPT (Q(ny oK)+ Any) Pz, (43)
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Figure 4.1.: Example of a conversion from a binary vector of length £k = 2 to a scalar value
between 0 and C' through multiplication with a vector p; by choosing p; = C -
27=1/(2% — 1), the interval [0, C] is sampled evenly.

where P = Iy @ p. Given a minimizer z* € BNk, the parameters w and b used for the
prediction function (see Eq. (2.11)) are then given by

w=((Pz") 0 )X
b=wTx'™ —y; foranyic {1,...,N},

where ' is the i-th row of the data matrix, i.e., the i-th data point as a row vector.

The question remains how to effectively choose p. As the encoding of the «; values al-
ready resembles the base-2 number system, it is natural to choose powers of 2 to subdivide
the space [0, C] evenly, in a way that Oy, represents 0, and 1j, represents C. To achieve
this, let p; = C - 2071 /(28 — 1) forall j € {1,..., k}. It is easy to see that

j—1

k k-1
c-2 C ;
— J
ZQk—l _2k—1,22 =C,
Jj=1 J=0

and the interval [0, C] is subdivided evenly, as visualized in Fig. 4.1. Another advantage
of choosing this p is that the special case kK = 1 yields the original Binary Quso-SVM
given in Def. 4.1. Therefore, we can focus on Def. 4.2 in the following evaluation.

Experimental Evaluation

It remains to be investigated how the discretization of c affects the quality of the trained
classifier. To test this, we train the k-bit QUBO-SVM on a range of data sets for various
values of C' and k and record their test accuracies. For comparison, we also train a classical
linear SVM using LIBSVM [113], which is contained as part of the scikit-learn Python
package [103].

The data sets we use are listed in Table 4.1. All three data sets are widely used as classifica-
tion benchmarks throughout literature, two of which we have already seen in Section 3.4.
As the SVM (in its original form) can only separate two classes, we modify both iris and
mnist: For iris, we only use the classes versicolor and virginica, which leaves N = 100
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Table 4.1.: Data sets used for numerical experiments. For each data set, the number of features d
and data points N is given.

Name References d N
iris (mod.)  [114] 4 150
sonar [115] 60 208
mnist (mod.) [96] 196 200

data points. For mnist, we only use 100 samples each of the digits 4 and 7 as our two
classes. To reduce the number of features, we perform max-pooling over every 2 x 2
pixel block, reducing the image size to 14 x 14 pixels. We normalize the values to the
interval [0, 1] and then linearize the images to vectors of length 196, arriving at a data set
with NV = 200 and d = 196.

To get a wider overview over the model’s performance, we test all combinations of values
C {276,275 ...,24)  and k € {1,2,3}. For choosing A we use an iterative approach
where we start with A = 1, solve the QuBo problem and check if the constraint z*TPTy =
0 is violated. If it is, we double A and try again until we find a valid solution.

As a solver, we use the MST2 multistart tabu search algorithm [116] contained in the
dwave-tabu Python package!®, which performs one million restarts per run. To further
increase the solution quality, we perform 20 runs for each QuBo instance. In addition, we
tried to solve the QuBo problems on a D-Wave quantum annealer. However, we found
that Eq. (4.3) produces dense weight matrices for which the system was not able to find
an embedding onto its qubit topology.

We performed a 5-fold cross validation and report the mean prediction accuracy in Fig. 4.2,
making sure to use the same splits across all models and hyperparameter settings for
comparability. Remarkably, despite the strong simplification of using even just two dis-
crete values for all a;, the accuracy scores are comparable to the LIBSVM results that use
floating-point values. For small C, the QuBo-SVM even surpasses LIBSVM on iris and
sonar. Surprisingly, increasing the precision by choosing a larger k£ does not generally
lead to higher accuracy; only on mnist a higher k-value leads to better solutions for larger
C. This implies that using a higher number of support vectors that contribute equally to
the parameter vector w is more useful than allowing for more fine-granular weighting
of fewer support vectors, which is an interesting insight, whose generality needs to be
investigated more thoroughly in future work. However, we observe that from a certain C'
value we cannot find suitable solutions on both iris and mnist, as the minimizing vector
is Ok, and o = O accordingly. Without any support vectors we cannot correctly com-
pute w, and the resulting predictions are not usable - this is reflected by missing values
in the figure. We observe that this problem is mitigated by higher values for k, as we
obtain usable results with higher C' on all data sets if we choose k = 2 or k = 3, at the
cost of increasing the QUBO size.

Bhttps://docs.ocean.dwavesys.com/projects/tabu/en/latest/
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Figure 4.2.: 5-fold cross-validated prediction accuracies of the k-bit QuBo-SVM and LIBSVM on
the three data sets listed in Table 4.1, using various values for C' and k.

Concluding Remarks

It is possible to train SVM classifiers using a QuBo embedding that can be solved on
quantum annealers to obtain the set of support vectors. The weightings o from the dual
SVM can be approximated to arbitrary precision by using k bits per weight, which leads
to a Quso formulation of size Nk, where N is the number of data points. We have seen
that, while a higher £ does not necessarily increase the classification accuracy, it allows
for higher values of C' by avoiding all-zero solutions to the QuBO problem. In general,
however, the accuracy for lower C' is competitive with LIBSVM, even for k = 1, which is
surprising given that LIBSVM uses full floating-point precising.

The size of the QuBO problem is, at the current point of time, a limiting factor for the
QuUBO-SVM, as the number of variables is Nk. At the current point in time, this limits
its use to data sets with only up to a few hundred data points. However, with further
improvements in QA, it may be faster to train SVMs on large data sets using noise-free
quantum annealers with a large number of qubits in the future, as classical SVM train-
ing algorithms such as SMO also scale polynomially in the number of data points [117].
Moreover, AQC on perfect hardware would be able to find the globally optimal set of
support vectors, whereas many classical algorithms use local search methods. Therefore
AQC has the potential to contribute to more accurate classification models.

Gate-Based SVM Deployment

Now that we have seen an example of how SVMs can be trained using QA, we focus
on the deployment of already trained models. That is, given a feature vector ¢(x) and
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the weights w, we want to compute the sign of the inner product, which allows us to
obtain the model’s prediction. This time, instead of QA, we use GQC to achieve this goal
and construct the Real-part Quantum Support Vector Machine (RQSVM) circuit, which
computes the required inner product through repeated measurement.

Since all operations in a quantum circuit must be unitary to ensure the preservation of
quantum state properties, we will need a unitary representation of the model weights and
the feature vector. To this end, we define a number of building blocks:

Definition 4.3 (Unitary Vector Embedding [2]). Given a vector v € [—1,1]¢, letn =
[log,(d)]. The 2™ x 2"-matrix A(v) whose elements are given by

exp[—iarccos(v;)] ifj=kandj <d
A(v)jr =4 —i ifj=kandj>d
0 otherwise (off-diagonal)

is diagonal and unitary.

Unitarity follows from |exp[—iarccos(v)]| = 1 for all v € [0, 1]. The definition of A(v)
gives rise to an n-qubit quantum gate. In general, it is hard to factor arbitrary unitaries
into elementary quantum gates, A(v) describes a diagonal gate, i.e., all off-diagonal en-
tries of the unitary are 0. For such gates, a number of strategies have been discovered to
implement them using low-dimensional basis gates [118, 119]. A(v) is our core building
block that we use to represent w and () in a quantum state.

As the next element, we define the following block diagonal matrix:

Definition 4.4 (Multiplexor [2]). Given two unitary matrices Uy, Uy, their direct sum
U@ U; = [0)0| @ Uy + |1X1]| ® Uz
is unitary.

This notion is helpful to construct unitary operators that act simultaneously on indepen-
dent sub-spaces of qubits. Decomposing U; @ Uy into basis gates is straightforward as
long as decompositions for U; and Us are known [119]. Summation alone does generally
not produce unitary matrices. However, due to the unitarity of U; and Uy, one can easily
prove that (U; @Us,)(U; @ U,)" = T holds. As the dimension of the underlying quantum
state is doubled, multiplexing requires an additional qubit. This auxiliary qubit will later
be exploited to simulate a non-unitary operation.

Another component of the RQSVM circuit is the real-part extraction. Unitary vector em-
beddings of w and ¢(x) have a complex part that is required to make the corresponding
operators unitary. However, when we compute the inner product of these operators, the
result will not be equal to the desired inner product of weights and features, therefore we
need to apply a real-part extraction to remove the complex part.
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Definition 4.5 (Real-Part Extractor [2]). | Given a diagonal unitary matrix S, the unitary
matrix

R(S) = (HRI®")(S @ ST (H®I®)

allows us to apply Re S on some arbitrary quantum state 1)), where H is the Hadamard
gate and I is the identity matrix.

The real part of any complex number z € C can be written as (z 4 z*)/2, as the complex
parts are added to each other with opposite signs, canceling each other out. Similarly, for
any U € C¥"*?" (U + U')/2 extracts Re U, such that it may act on the n-qubit state
|)). On a gate-based quantum computer, we consider the multiplexed unitary U @ U,
Intuitively, by applying the Hadamard gate H to the auxiliary qubit |a), either U or U
will be applied to |1), each with probability 0.5. Depending on the measurement of |a),
either the real or the imaginary part of U will be applied to |1)). More precisely, we
execute

T _ Ut
RO =3 (o1 o ot) 0@ 1) (a9

Clearly, when we eventually measure |a) = |0), then the circuit successfully executed a
non-unitary operation, namely [¢), = (U + U") [¢)) /2 = (ReU) [¢)). On the other
hand, when we measure |a) = |1), then the output of the circuit is [¢0) = (U —
U [¢) /2 = (ImU) |4), and thus the imaginary part is extracted instead. Real-part
extraction appeared before, e.g., in [120]. However, until now it has never been consid-
ered in the context of quantum SVMs or supervised QML in general.

One last building block is required to embed signed values into a quantum state:
Definition 4.6 (Sign Expansion [2]). Given a vector v € [—1,1]%, the vector
=(0)®@v-)+ (1) @vy)

is in [0, 1]2, where v (respectively, v_ ) replaces all negative (respectively, positive) entries

of v by 0.

A d-dimensional vector of signed numbers can be equivalently written as a 2d-dimensional
vector of unsigned numbers, with all positive and negative values stored separately, which
is what Def. 4.6 implements.

Based on these building-blocks, we can construct the complete RQSVM circuit:

Theorem 4.1 (Real-Part Quantum SVM [2]). Let ¢ : R™ — Ri, w € R b > 0be
the feature map and parameters of an SVM. Additionally, let

Cw(x) = R(W(w/|w]e) U(x)), (4.5)
where W(w) = A(,/wt) ® A(,/wr)! and U(z A(Ve(x)1/]|o(z)]|oo))- Here,

square roots of vectors are computed element-wise. Model predictions are computed via

qw,p(®) = sign(2"||wl|oolo(@)[|oo (P (j < 2d [ @) — 2Py (j < d [ @) —b),  (46)
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q0

a-H - -X - -X-H- -X - -X
Figure 4.3.: Circuit diagram of W (w)U (z) for a 2-dimensional RQSVM. Adapted from [2].

with [1h) = [0)°@(H®0))®" andn = [log,(d)]. We find that gy () = Guw (), ie.,
the output of the RQSVM circuit Cy, () is identical to the classical SVM with parameter
vector w and feature vector ¢(x).

Proof. Let ¢ = (2"||w||oo|/o(2)||o0) ~ L. By Definitions 4.3, 4.4, 4.5, and 4.6 we have

Pu(j | ) = | (j| ROW (w/||w]|oc)U (2)) [thin) [
—wj;p(x); fw;<0O0andj<d

0 ifw; >0andj <d
=c

wjgo(ac)j if’lUj >0andj >d

0 ifw; <Oandj>d

for 1 < j < 2d. Thus,

Py (j < 2d | a) — 2Py (j < d | )

2d d
= ) Pu(i|z)—2> Pu(j| =)
j=1 J=1

2d d
= > 101 Cw(@) i) P = 2D | (] Cw(®) in) |
j=1 j=1
= cwlp(x) .
Plugging this into Eq. (4.6) yields gy () = Uy () as desired. O

The theorem states that the RQSVM circuit can mimic any classical SVM with a positive
feature map, ¢ : R™ — Ri. In practice, however, this is not a limitation, as any (bounded)
feature map can be translated into the positive orthant [9].

An example of a complete RQSVM circuit for 2-dimensional inputs is shown in Fig. 4.3:
Unitary embeddings (Def. 4.3) are represented by the A gates. Each A gate is responsible
for storing the 2-dimensional SVM weights or feature vectors in an operator on the first
qubit. The auxiliary qubit a controls whether each A gate is active. Each alternating
sequence of A and X gates realizes a multiplexor (Def. 4.4). The first multiplexor applies
either A(y/p(x)+) or A(y/p(x)+)! to the qubit gy, based on the state of the auxiliary
qubit a. The Hadamard gate brings a into a superposition state, allowing both opera-

tors, A(\/¢(x)+) and A(y/¢(x)+)T, to be applied to gy simultaneously. Depending on
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the state of a, either the real-part or the imaginary part is extracted (Def. 4.5). Since the
Hadamard gate H is its own inverse, the second application of H returns the auxiliary
qubit @ to its initial state |0). Subsequently, A(,/wx) is multiplexed. The circuit re-
quires n = [log,(d)] + 3 and hence O(log,(d)) qubits. The three additional auxiliary
qubits arise from two chained applications of the real-part extractor, as well as the sign
expansion. When w is positive, sign expansion is not required, and the decision function
simplifies to q:;b(x) = sign(2"Py(j < d | x) — b).

We have no direct access to [t)oyt) On an actual quantum computer, as the dimension |oyt)
is 2". Accordingly, reading out all entries of the quantum state vector would take an ex-
ponential amount of time and space. Instead, the probability P, (- | ) is estimated from
measurements of [¢,u). The probability for an additive error of ¢ is in O(exp(—Ne?)),
which follows from Hoeftding’s inequality [121]. The error approaches 0 in the limit of
infinite quantum measurements.

Because the actual number of measurements is finite in practice, the output of the RQSVM
will suffer from statistical noise. Various additional sources of noise introduced by NISQ
devices affect the outcome of the computation further (compare Section 2.4.4). Even
though it was shown theoretically that the RQSVM reproduces the classical SVM results,
we are still interested in its performance in practice.

Evaluating the Performance of Quantum Inference

So far it was proven theoretically that the output of the proposed RQSVM converges to
that of the classical SVM. While the model is sound in theory, we want to assess em-
pirically how well the RQSVM captures the classical hyperplane in practice, and how it
relates to a plain quantum SVM. As discussed in Section 2.4.4, practical QC faces many
challenges, and we want to compare the performance of our proposed method as it is in
theory and in practice. To this end, the following sections present a series of illustrative
experimental results obtained from an exact QC simulation, and from a 27-qubit IBM Q
Falcon r5.11 superconducting quantum processor. We investigate the effect of increasing
the data dimensionality (i.e., the number of input features) on the model’s performance in
Section 4.2.2, and finally compare the RQSVM to an alternative Quantum SVM model in
Section 4.2.3. For our results, we report the prediction accuracy as in Section 4.1.2.

In conventional Quantum SVMs, parameter training itself can only be carried out on a
quantum computer, or using a quantum simulator, which becomes more and more inef-
ficient with an increasing number of features. The RQSVM, on the other hand, can be
trained entirely classically, without relying on a costly and memory-inefficient quantum
simulation or access to a quantum processor. Thus, in an initial experiment, we learn
the parameters of a linear SVM, again using LIBSVM (see Section 4.1.2). To this end,
we create a data set with N = 100 data points, each sampled uniformly at random from
[0, 1]%. We extract the estimated parameters w = (3.914,2.966)T and b = 2.145 from the
learned model and load them into our quantum circuit. To better understand the impact
of a noisy quantum computation, a comparison of the LIBSVM model, a stochastic quan-
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Figure 4.4.: An SVM with w = (3.914,2.966) and b = 2.145 on a data set of N = 100 points,
using three inference platforms LIBSVM, a quantum simulator, and a real quantum
device. Red crosses indicate misclassified points. Source: [2].

tum simulation (including statistical noise caused by measurement), and results from an
actual quantum processor is provided in Fig. 4.4: The dotted line is the separating hy-
perplane. The leftmost plot shows the results for a classical implementation of Eq. (2.11),
where color indicates the value of wT¢(a) —b. For comparison, the center plot shows the
predictions based on a simulation of f(x) = C¢(x) |[1)in) (see Theorem 4.1) for M = 100
measurements (or shots) per data point. Here, a darker color indicates the absolute error
|qw.b(T) — fuwp(x)|, and red crosses mark misclassified data points. The rightmost plot
shows predictions computed from measurements taken on an IBM Falcon r5.11 super-
conducting quantum processor with matrix-free measurement mitigation [122]. Again,
M =100 shots are generated to estimate P,,(j < d | «) for each of the 100 data points.
Intuitively, we see from the simulation results (center) that statistical noise is responsible
for deviations from the classical SVM (left) for data points that are close to the decision
boundary. This type of noise is inherent to every sampling-based approach, and therefore
to every method that relies on repeated quantum measurements. On the other hand, noise
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Figure 4.5.: Effect of an increased number of features on the prediction accuracy on synthetic
train and test data. Error bars indicate the uncertainty caused by measurement noise.
The dotted line shows the accuracy of the classical SVM. Source: [2].

that arises from the quantum hardware (right) results in deviations from the input model
which are rather far away from the decision boundary. While it is currently possible to
mitigate this type of error with [123, 122], eliminating it completely generally not pos-
sible. Upcoming generations of quantum computing hardware might allow a correction
of errors [124], but these methods do not apply to current NISQ hardware. Neverthe-
less, the quantum hardware correctly reproduces 87 of 100 SVM predictions, which is an
overwhelming result in the era of NISQ hardware.

Increasing the Number of Features

The previous results were obtained on a data set with only two features. Conventional
Quantum SVM models scale well with the number of features, therefore the question of
how the performance of the RQSVM model changes when we increase the number of
input features arises naturally.

76



4.2.3.

4.2. Gate-Based SVM Deployment

This time, we sample 300 data points consisting of d features for each d € {2, 4, 8,16, 32}.
The number of data points is quite arbitrary; choosing a relatively low number of a few
hundred points leads to quick SVM parameter training. Choosing d as powers of 2 allows
us to observe the effect of dimensionality on increasing orders of magnitude. As input
features, we use d-dimensional vectors sampled uniformly from [0, 1]%. Next we draw
a hyperplane through the center of the hypercube by sampling w € [0, 1]¢ uniformly
from the set of vectors that sum to 1 and setting the bias b = —|w||1/2 so that the
decision boundary runs through the middle of the unit hypercube. Labels are generated
by setting y; = 1 with probability 1/(1 + exp(—50(wTx + b))), the intuition being that
points very close to the hyperplane are randomly assigned to either {—1, +1} based on
this probability. This leads to a data set that is not perfectly linearly separable, requiring
the use of slack variables. The resulting data sets for each d are split into 200 training and
100 test samples.

We proceed to train a classical SVM and perform a parameter search for the best regular-
ization parameter C by trying all C' = 2¢for ¢ € {—8, ..., 7} and choosing the value that
yields the highest accuracy. Next, we construct the RQSVM circuit and fix the weights to
the vector w taken from the trained classical SVM, and run it repeatedly, taking 102, 102,
and 10* measurements. For each model, we report the training and test accuracies.

Figure 4.5 shows the results of this experiment: The dotted line indicates the theoreti-
cal accuracy computed by the classical SVM, while the colored bars show the measured
results for the different numbers of shots. As expected, the performance of the RQSVM
approaches that of the classical SVM when the number of measurements is increased, and
the amount of uncertainty descreases accordingly. Notably, already a relatively low num-
ber of 10® shots achieves near-optimal performance, which is particularly true for lower
dimensions. More generally, we observe that the performance gap between the number of
shots gets more pronounced with larger feature dimension. This is most likely due to the
larger number of qubits requiring more samples to estimate P, (j | ) more accurately.
However, this effect is less pronounced than we expected, indicating that the increase in
dimension does not drastically affect the performance. Lastly, we observe a general drop
in accuracy with higher dimensions, which also occurs in the classical SVM model and is
most likely due to the fixed number of 200 training data points, which becomes increas-
ingly insufficient to estimate sufficiently accurate SVM model parameters. This result
once more shows that the RQSVM replicates the classical SVM’s behavior faithfully up to
statistical noise.

Comparison to a Conventional Quantum SVM

In our final experiment, we investigate the prediction quality of the RQSVM in compar-
ison to a conventional Quantum SVM on a benchmark data set. The digits data set!®
contains small images of hand-written digits (0 to 9), similar to mnist used in Section 4.1.2.

“https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits (last ac-
cessed June 3, 2025)
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Figure 4.6.: Comparison of the per-class accuracy between random guessing (Bernoulli dis-
tributed), the classical SVM, a standard Quantum SVM with an noise-free quantum
simulation, and the RQSVM with noisy simulation of 103, 10%, and 10° shots on the
digits data set. Error bars indicate the uncertainty that arises due to statistical (mea-
surement) noise. Source: [2].

All images are gray-scale and have size 8 x 8 pixels, which yields 64 numerical features
representing pixel brightness with values 0 to 16. In total, the set contains 1797 images,
with about 180 images for each digit. For our experiment, we divide the pixel bright-
ness values by 16 to normalize them to the range [0, 1]. As we did for mnist, to further
reduce dimensionality we apply max-pooling to all 2 x 2 tiles of the images, reducing
them to size 4 x 4 with 16 features. For each digit j, we select 174 images (the minimum
number of instances available for each digit) of 7 and combine them with an equal num-
ber of randomly selected non-j images from the remaining data set. This leaves us with
a balanced 1-vs-all classification data set for each digit, on which we train one RQSVM
classifier each using the following strategy: We train a classical linear SVM and, as for the
previous experiment, detect the best C, trying all C' = 2¢ for ¢ € {—8,..., 7}, and save
the parameters w and b that yielded highest accuracy. Then we build the RQSVM circuit
with those fixed weights w and evaluate it for every image in the sub-data set with 102,
103, and 10* shots respectively.

As a baseline model to compare the RQSVM against, we train a conventional Quantum
SVM without real-part extraction. For a fair comparison, the plain Quantum SVM has
the same number of parameters as our RQSVM and uses the same feature map. The con-
ventional Quantum SVM uses four entangling layers!’ with alternating rotation gates on
each qubit, followed by CX gates between all adjacent qubits. The circuit parameters are
trained using the ADAM optimizer [107] set to a learning rate of 0.1, which is run for 1000
iterations. To compute the gradients of the parametrized quantum circuit, the parameter

17https://docs.pennylane.ai/en/stable/code/api/pennylane.BasicEntanglerLayers.html (last ac-
cessed June 3, 2025)
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shift rule is employed [125]. To eliminate the effect of noise for the conventional Quan-
tum SVM, we use a noise-free statevector simulation, which is equivalent to obtaining an
infinite number of shots.

The 1-vs-all classification accuracies for all classifiers are shown in Figure 4.6. As we
have already shown in the previous experiment, we find that our RQSVM converges to
the classical SVM’s performance as the number of shots increases. With the data set’s
greater complexity compared to the synthetic data used in previous experiments in mind,
100 and 1000 shots result in significant performance penalties across almost all classes.
Nevertheless, the RQSVM with 10* shots is always very close to the classical SVM. The
conventional Quantum SVM is, however, not capable of reproducing its classical coun-
terpart to a comparable degree, falling short of the RQSVM’s performance using only 100
shots on most digits, except 2 and 3. Moreover, for at least 6 classes (digits 0 and 5-9),
its accuracy is within a standard deviation of guessing class labels uniformly at random.
This clearly shows that, given the same number of parameters, the RQSVM achieves much
better classification performance compared to the conventional quantum model.

Concluding Remarks

As QC keeps evolving, it seems natural to ask under which conditions QML methods can
be a useful extension to the set of well-established ML methods. While we know that
there exists a very small set of classification problems which seem to be easier to learn
with a quantum model [126, 127], the theoretical insights presented in this chapter prove
that quantum circuits with log, (d) qubits are capable of simulating classical SVMs with d-
dimensional feature maps perfectly in the limit of infinite quantum measurements. Even
for finite sample sizes of approximately 103 shots, our experimental results demonstrate
that the RQSVM closely approaches the classical SVM and consistently outperforms con-
ventional Quantum SVMs on the benchmark data we used. This number of quantum
measurements is moderate, as practical implementations of quantum processing units
typically allow for 10* or even 10° shots per circuit run.

The insights presented in this chapter allow us to apply theoretical findings by the ML
community to the class of Quantum SVMs. While the broader problem of finding a quan-
tum circuit that acts as a good feature map for a giving classification problem - or, for
that matter, even deciding if a given circuit is a good feature map - remains unsolved,
we have shown that the broad and well-understood class of (classical) SVMs is contained
within the Quantum SVM framework, as quantum circuits can replicate them.

In the future, the RQSVM may prove beneficial in scenarios involving quantum data,
where the input data comes not in form of a classical data set but as a set of quantum
states, e.g., measured by quantum sensors, or produced as output by other quantum meth-
ods. Measuring such states to transform them into classical data and training a classical
ML model would be inefficient, as we would need to store the empirical distribution clas-
sically, which requires exponential memory space. Instead, the quantum state could be
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processed directly by a quantum device. A direct implication of our findings is that such
quantum states can be processed by a classical SVM that has been converted to an equiv-
alent quantum circuit.

In summary, we have shown that both training and deploying SVMs is within reach of
quantum computers, which opens up new avenues for both theoretical and applied re-
search in QML, expanding our understanding of the landscape of Quantum SVMs.
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5. Quantum Circuit Evolution

While the previous part has focused on applications of QC for the sake of supplementing
ML methods, we now turn to the second aspect of this thesis: How can methods and
algorithms from classical computer science be used to supplement QC?

With quantum devices still in the NISQ era (recall Section 2.4.4), we have to deal with a
number of problems and limitations imposed by the imperfect hardware we have access
to. Although quantum algorithms exist whose theoretical runtime guarantees supersede
those of their classical counterparts [62], the noise inherent to NISQ machines largely pre-
vents the application of well-known quantum algorithms with proven speedups, except
for some toy examples. The Variational Quantum Eigensolver (VQE) introduced in Sec-
tion 2.4.2 is more robust and better suited to the available hardware: Here, one iteratively
optimizes a set of parameters with respect to their performance on a given cost function.
Applications include, among others, ground state approximation [128, 65], simulation
of imaginary-time evolution [129], and also QML [130]. However, NISQ limitations still
present significant challenges to a practical application: They only allow for low circuit
depths due to large error probabilities and short decoherence times, which multiply with
every layer of gates (see Section 2.4.4).

In addition to practical limitations, the problem of barren plateaus [22] causes gradients of
cost functions to become exceedingly small as the number of system qubits is increased,
prohibiting gradient methods when dealing with a large number of parameters. In turn,
this diminishes some of VQE’s potential for problems of a practically relevant size [131].
To bypass such issues, we investigate EAs introduced in Section 2.2.2 for learning not only
the parameters of circuits, but their overall structure, eliminating the need for gradient
computation entirely.

In this chapter we evaluate how well evolutionary optimization is suited to the problem
of learning quantum gate circuits, given an objective function that corresponds to the
expectation value of a target Hamiltonian. More precisely, we define a mutation operator
that uses insertion, deletion, swapping, and modification of circuit gates. The resulting
specialized EA with this operator we call Evolutionary Circuit Learning (ECL).
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This chapter is based on the publication [6]. The author of this thesis introduced
the idea of using evolutionary optimization for circuit learning, defined the mutation
operator, and implemented the optimization routine in Python. He formalized the the
evolutionary algorithm and wrote the corresponding sections in the paper. He jointly
designed and conducted the experiments, and developed the tools for analyzing the
EA operations.

From Section 2.4 we recall that the Hamiltonian of a quantum system is an operator (that
is, a complex-valued Hermitian matrix) corresponding to the total energy of that system.
By testing the algorithm on Hamiltonians of varying difficulty, we show that particular
operations become more important than others. In case of a local Hamiltonian, the al-
gorithm tends to inserts gates in ~ 7% of all cases, while the other operations are not as
useful. In contrast, for a Spin-Glass Hamiltonian, the success rate of the swapping oper-
ation is highest at about 11%, indicating that for more difficult problems gate insertion
might be insufficient for successful optimization, and refining similar observations from
literature [132].

Similarly to Chapter 4, we conduct experiments on real quantum hardware to see the
impact of NISQ hardware on the performance of EA on quantum circuits. As we expect on
NISQ hardware, convergence towards ground states prepared by non-local gates happens
slower when IBM quantum backends are used. Finally, we compare the convergence
speed to that achieved by GD methods and find that the evolutionary scheme outperform
the gradient method in terms of the number of circuit evaluations, as sketched in Fig. 5.8.
While this result depends on the quantum devices at hand and their properties (number
of qubits, error rates, etc.), it shows that EAs are a viable option for quantum circuit
construction.

Literature Overview The idea of VQE is the foundation for everything we discuss
in this chapter, see Section 2.4.2. While variational approaches were developed concur-
rently [133], there are two broad categories of work connecting evolutionary algorithms
and quantum computing: Quantum-inspired EAs for classical computers, and simulated
quantum EAs.

Quantum-inspired EAs for classical computers simulate qubits, gates, superposition, and
quantum measurement to solve various problems within the standard optimization frame-
work, hoping to benefit from richer data representations enabled by quantum states and
superposition [134]. The concept can be transfered to deep ANN architecture optimiza-
tion, where it is able to yield effective yet simple CNNs [135]. The disadvantage of these
techniques is the considerable computational cost of quantum simulations. For instance,
the authors of [135] had twenty Nvidia K80 GPUs (using a total of 480 GB of GPU RAM)
running for two days to perform their experiments.
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Figure 5.3.: Circuit evolution minimizing the transverse field Ising Hamiltonian. Left: After 10
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permost and lowermost qubits. Adapted from [6].

Simulated quantum EAs utilize classical EAs in a simulated quantum computation envi-
ronment. As an early success, such an algorithm was able to find a solution to Deutsch’s
problem [136]. More recently, a special Ising-type quantum computer was used to evolve
multiple quantum gates in simulation [137].

Limited availability of working quantum hardware has long been a prohibitive factor for
quantum evolutionary computing [138, 139]. However, the evolutionary approach has
gained some traction, as it reduces the quantum computational overhead of exceedingly
deep ansitze [63]. Asdiscussed in Section 2.4.4, NISQ hardware limits the depth and com-
plexity of circuits that can be executed successfully, which makes the prospect of keeping
them small and simple promising. Particularly the Adapt-VQE algorithm [133] has shown
promising results by alternating between optimizing the circuit ansatz and the parameter
configuration. Another issue potentially solved by using non-gradient methods such as
EAs is the phenomenon of vanishing gradients [140]. However, other works argue that
the problem may persist [141]. Finally, additional problems like abrupt training transi-
tions can arise [142].

Evolutionary Circuit Learning

To quickly recap Section 2.2.2, generic EAs iteratively work with a population of can-
didate solutions, and optimization is carried out over a number of generations; in each
generation, ;1 > 0 candidates that constitute the parent population produce an offspring

86



5.1.1.

5.1. Evolutionary Circuit Learning

population of A > p candidates by means of crossover and mutation; these operations
are specific to the problem domain at hand. In our application, candidates are quantum
circuits, and mutations cause small changes to the circuit, such as addition or removal of
a gate, or nudging of a gate’s parameter. We use plus selection, which exhibits elitism,
ensuring that the overall best loss value always monotonically decreases over time. If
none of the offspring individuals yields an improvement, the original parent population
carries over to the next generation unchanged.

The classical Neuro-Evolution of Augmenting Topologies (NEAT) algorithm [143] adapts
evolutionary algorithms for learning the structure of ANNs jointly with weight optimiza-
tion: The initial parents have a minimal structure to avoid overly complex solutions. Due
to the competing conventions problem [143] we choose not to include crossover: In ANNs,
the order of neurons within hidden layers is arbitrary, as they can be permutated and still
produce the same model output. Similarly, the construction of quantum circuits allows
for many degrees of freedom. For example, the order of quantum gates acting on inde-
pendent sub-systems is arbitrary (i.e., a convention) [62]. Consequently, combining parts
of two individuals following different conventions tends do destroy the overall function-
ality.

The resulting EA we describe in the following evolves candidate solutions solely by ap-
plying a domain-specific mutation operator. To this end, we define a set of basis gates as
the building blocks of the circuit architecture. As the circuits should be members of the
entire unitary group over the chosen number of qubits, we give the algorithm access to a
universal set of gates (cf. Section 2.4.5). Evolutionary optimization allows us to find a cir-
cuit C' € C that approximates the best possible circuit with respect to some cost function
f 1 C = R, where C represents the set of all possible circuits. In the following sections,
we refer to our method as Evolutionary Circuit Learning (ECL).

A Universal Gate Set

Assume we are constructing circuits with n > 2 qubits. The circuits we consider are
constructed from a set G of gates of the form

G(U,0) = exp [—iZU] , (5.1)

where U is a base unitary from a pre-defined set{, and 6 € [0, 27) is a rotation angle. The
exponential function represents the matrix exponential here. Our base unitaries { are the
union of single-qubit operations Usingle and two-qubit operations Uyo, where

Usingle = U {afx), cri(y), O'Z(Z)}, (5.2)
1<i<n
Urwo = U {a'gx)a](.w), al(y)aj(.y),agz)a'j(z)}, (5.3)
1<i<j<n
U= usingle U Utwo- (5.4)
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This effectively generates all possible single-qubit (Rx, Ry, Rz) and two-qubit (Rxx,
Ryy, Rzz) rotation gates, applied to each combination of qubit indices.

Proposition 5.1 (Universality of G [6]). The gate set G as defined above is universal.

Proof. From [144] we know that {Ry, Rz, CX} is a universal gate set. One has

7w i

CX = (Ry(—5) ® L)(Rxx(~5))(Rx (5) @ Rx (—3)) Ry (5) @ 1) (S() ©S(1))

with the global phase shift gate S(§) = exp[idI] and the identity gate I = Rz(0), where
Rx(d) = Ry(7/2)Rz(6) Ry (—7/2) and § € [0, 27). Since the global phase shift does

not affect measurement outcomes, G is indeed universal. O

The native gate set of IBM quantum devices is in fact Gsmo = {I,Rz, X, VX, CX},
where X = Rx(7)S(7/2) and vX = Rx(n/2)S(—7m/4). In order to run a circuit
consisting of gates from the set G on IBM hardware, the circuit has to be transpiled to
only use gates from Gpmg (see Section 2.4.5).

Mutating Quantum Circuits

The cost value of a circuit is defined by the expectation with respect to some target Hamil-
tonian H with |t)¢) as initial state:

F(C) = (¥o| CTHC |4y) . (5.5)

Finding a circuit Cp that minimizes f is an optimization task over the search space U,
defined through a mix of discrete and continuous values, namely unitaries U € U with
their respective qubit indices, and real-valued parameters 6.

While gradient methods are restricted to optimize the real-valued parameters 6 on fixed
circuit layouts, they cannot efficiently learn the overall circuit structure, since adding or
removing gates are both non-differentiable operations. Indeed, the gates in G are certainly
differentiable w.r.t. # around 6 = 0, and applying a rotation gate with angle parameter 0
has the same effect as applying no gate at all. Therefore, insertion and deletion of gates
can, in principle, be simulated by gradient-based methods. However, this would require a
very large initial circuit that contains all attainable circuits as a sub-structure — a strategy
that should be avoided due to the limited depth allowed on NISQ devices.

EAs with elitist selection as described in Section 2.2.2 can deal with non-differentiable and
even non-continuous search spaces, because they only require some mutation operator
m that takes a circuit C as input, applies random changes to it, and produces a slightly
altered circuit C. More formally, we can interpret a circuit as a sequence of gates, C' =
(G1,...,Gp), forsome L € Nand G; € GVi € {1,...,L}. The set of all circuits can
be represented as Gt = (J; .y G”. Then, m(C) is a random variable over G*. If C has
support everywhere on GT, i.e. P(m(C) = é’) > 0 for all C € G, then the EA is
guaranteed to converge to the global optimum [145].
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Assume we have 1 parent circuits C}, . . ., CZ in generation ¢. To find the parents of the
next generation t + 1, we perform the following steps:

1. Sample A offspring circuits C’f, N C’f\ by mutating random parents, i.e., é’f ~
m(C§) for every i € {1,...,\}, and for some randomly chosen j € {1,...,u}
per i. Ideally, A > p and every parent circuit is mutated at least once to preserve
diversity in the population.

2. Sort both the parent and offspring circuits by the loss function f.
3. Take the p circuits of lowest loss value and assign to them Cf“, el Cffl.
This process is repeated until some convergence criterium is met, e.g.,

+ no more changes occur, i.e., for a given number of generations 7 > 0 we find
t+ t+
(C" M cicy = {C M hizizn,

« the loss value does not decrease over 7 generations, i.e.,

. t+71\ . t
1r§nilgp f(Cz ) - 1I§nilgu f(Cz)a

» some budget is depleted, e.g., a fixed maximum number of computations on a quan-
tum device.

See Fig. 5.1 for a schematic outline of the Evolutionary Circuit Learning (ECL) algorithm.
Note again that this setup is different to the framework of regular VQE [67], which as-
sumes a fixed circuit C(0) with exposed parameters 6, and uses a gradient method to
optimize f w.r.t. 8, leaving the circuit structure itself unchanged.

For our experiments, we defined the mutation operator m as a two-level random process,
consisting of (i) randomly choosing an action from a list of options, (ii) sampling the
parameters for the chosen action.. The parametrized action is then applied to the circuit at
hand. The possible actions (with their respective occurrence probabilities in parentheses)
are:

« INSERT (50%): Sample unitary U € U and parameter § € [0, 27) uniformly and
insert the corresponding gate at a random position.

« DELETE (10%): Delete gate at a random position from the circuit.

+ SWAP (10%): Combination of DELETE and INSERT at the same randomly chosen
position.

+ MODIFY (30%): Modify parameter of randomly chosen gate according to 6 — 0+¢
with e ~ N(0,0.1).

The probabilities were found to perform best in a range of preliminary experiments. See
Fig. 5.2 for a visualization of the four actions, and Fig. 5.3 for a larger example taken from
one of our experiments.
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With a probability of 10%, we repeat this entire mutation process after each action, lead-
ing to an expected number of 10/9 = 1.1 actions per mutation, the probability for 2
actions being about 9%, for 3 actions about 0.9% and for & actions 0.1¥%1.0.9in general.
This scheme enables the mutation to perform arbitrarily large jumps in search space with
positive probability, avoiding getting stuck in a local optimum indefinitely.

Experimental Evaluation

In this section, we evaluate the performance of ECL on standard VQE benchmark prob-
lems, both in simulations and on actual quantum devices. To this end, we use Qiskit to
define and modify quantum circuits in Python, simulate them classically, and send them
to IBM quantum devices (see Section 2.4.5).

For our experiments, ECL is implemented to perform an (1+4)-EA with the special multi-
level mutation strategy described above. We found the choice of A = 4 to be a suitable
compromise between population diversity and speed. The optimization run starts with a
minimal random circuit, consisting of a single gate with a uniformly sampled parameter.
From this initial parent circuit, we make four copies and mutate them independently. The
resulting offspring circuits are sent to the IBM backend. From the measurement results
we derive a loss value, which we explain in detail in Section 5.2.1. The entire population
is then sorted by loss value, and the circuit with lowest loss becomes the new parent for
the next generation. This process is repeated, with the parent’s cost value monotonically
decreasing, approaching the global optimum.

We append rotation layers to the circuit to measure expectations w.r.t. the Pauli terms
required by the Hamiltonian. For consistency, we leave most of the algorithm’s hyperpa-
rameters (population sizes i and )\, selection strategy, mutation action probabilities, etc.)
unchanged for the majority of our experiments and choose n = 10 qubits. In every gen-
eration, we thoroughly collect data about the evolution process. This allows us to extract
valuable information, such as loss value development over the generations, and success
rates of mutations actions, which we can analyze later.

Target Hamiltonians

As shown in Eq. (5.5), the cost function that we use for ECL is the expected energy w.r.t. a
target Hamiltonian. We expect that Hamiltonians whose ground states are highly entan-
gled are more difficult to to construct. Intuitively, this can be explained by the fact that the
qubits in non-entangled states (i.e., product states) can be optimized independently, while
entanglement requires more intricate operations acting on larger sub-systems, which
involve two-qubit gates. As an additional detrimental factor, two-qubit gates are more
error-prone on NISQ hardware!®. This should be reflected in differences in performance

'8IBM reports gate errors of all their devices on their quantum computing platform https://quantum.ibm.
com/services/resources (last accessed June 3, 2025); two-qubit gate errors are typically around an order
of magnitude higher than single-qubit gate errors.
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Figure 5.4.: Performance of ECL on H,, with n = 10, using real quantum backends Toronto,

Paris, and Manhattan, and a simulator. The mean over 5 runs is shown. Lower is
better. Source: [6].

between experiments on a simulator versus on actual quantum computers. To increase
difficulty gradually, we transition in three steps from a local problem to an Ising spin-glass
model only consisting of non-local terms, allowing us to investigate (i) our algorithm’s

capability to optimize increasingly difficult problems, and (ii) its performance on real
quantum devices.

Local Hamiltonian As a sanity check, we first consider a local problem

Hlocal = Z O'Z(x), (5'6)
=1

with a'i(gﬁ) being the Pauli-X operator acting on qubit ¢. Clearly, the ground state to this

Hamiltonian is given by the n-qubit product state |+)", which is a product state without
any entanglement. For this relatively simple problem, we expect stable convergence in

simulation and real hardware. We start with |<)®

" as the initial state, which is a ground
state of ()@,

Transverse-Field Ising Model (TFI) Next, we consider a 1D spin-chain with correla-

tion in the Z-component, and a transverse magnetic field with X -axis orientation [146],
modeled by the Hamiltonian

n—1 n
Hrg = —JZ O'Z-(Z)O'Z-(j_)l — Jagf)agz) - hz O'Z(x). (5.7)
i=1 i=1
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Figure 5.5.: Success rate of various mutation actions for each type of gate, averaged over all runs.
Left: Local Hamiltonian H,ca (Eq. (5.6)). Right: SK Hamiltonian (Eq. (5.8)). MUL
indicates that a series of multiple operations was successful. Source: [6].

For our purposes, we choose J = 1 and h = 1, opting for anti-ferromagnetic behavior
of this Hamiltonian. Note that Eq. (5.7) contains Hj,, as a sub-term, superimposing
the component requiring entanglement on top. The TFI model is known to exhibit local
minima, causing purely gradient-based methods to fail [147]. Here, ECL may be at an
advantage. For this problem we again start with state |<)®".

Sherrington-Kirkpatrick model (SK) The SK model simulates the behavior of a frus-
trated spin-glass [148] and was previously used as a benchmark model in quantum com-
puting experiments [149, 128]. The model is given by the Hamiltonian

1<i<j<n

where J;; are uniformly drawn from S for each pair 4, j. For every run, the J;; values
are re-sampled. Note that Hgsk consists exclusively of correlation terms, which is why
we expect this optimization problem to constitute a considerably harder problem than
the previous experiments. For this problem, we start with local o(*)-eigenstates on all
qubits, namely |+)®".

For our experiments, we used the IBM backends Manhattan, Toronto and Paris, alongside
the Qiskit state vector simulator. For all circuit we use n = 10 qubits. Figures 5.6 and 5.7
show the lowest energy value in each generation and for each platform; the right-hand
side plot shows only the simulation runs for more generations, to get a more complete
picture of the convergence behavior. The loss function value (i.e., the expected energy
of the resulting quantum states after applying the circuit w.r.t. the target Hamiltonian)
is plotted as mean and variance of 5 evolution runs. Additionally, to gain more insight
into the algorithm’s choices, we recorded which gates and evolutionary operations con-
tributed positively to the optimization process, shown as a histogram in Fig. 5.5. Overall,
we find our algorithm to perform well on all posed problems, converging to a circuit
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Figure 5.6.: Performance of ECL on quantum backends Toronto, Paris, and Manhattan, and a
simulation for the TFI Hamiltonian on 10 qubits. All runs are shown as a mean of
multiple runs. Lower is better. Source: [6].

with relatively low energy value. The histograms indicate intelligent circuit design both
in gate and operation choice, mostly reflecting our intuitions about which rotations are
useful for certain tasks. We find all operations to provide a non-negligible number of
useful additions to the optimization, and we observe distinct differences in the opera-
tions used between the Hamiltonians. While for the local problem, insertion of Rz gates
and removal of entangling Ryy gates seems to be a successful strategy, for the SK prob-
lem, swapping gates with Ryy has a higher success rate. Generally, we observe a slight
performance reduction on quantum hardware, particularly when multi-qubit gates are
required, which suffer most from NISQ-related problems (cf. Section 2.4.4). The conver-
gence rate of the simulation is faster, suggesting that the combination of sampling noise
and NISQ-related noise make it harder for the EA to find improvements.

The results for Hj,, are shown in Fig. 5.4. In this experiment we optimize a sum of
local o(*) terms over all qubits. The ground state of this Hamiltonian is the n-qubit prod-
uct state |—)®" which can be prepared by local operations. Since the problem requires
no entanglement between the qubits we expect relatively fast convergence for both the
simulation and the real runs. Indeed we and observe so in Fig. 5.4 with all runs steadily
converging to the global minimum. The convergence is steeper in simulation, which is
probably due to sampling noise when evaluating the Hamiltonian approximately from
a fixed number of measurements, whereas the simulator operates on the true complex-
valued quantum states and thus computes the exact expectation value. The initial phases
of the algorithm show a larger similarity between simulation and real hardware com-
pared to the optimization after generation 50. Since for this experiment we chose the
oW)-eigenstate on all qubits as the initial state, we expect rotations around the z-axis
(i.e., Rz gates) to be particularly useful. This intuition is confirmed by the analysis of
success rates in Fig. 5.5, where we find that Ry is indeed the rotation operation that sur-
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Figure 5.7.: Performance of ECL on quantum backends Toronto, Paris, and Manhattan, and a
simulation for the SK Hamiltonian on 10 qubits. All runs are shown as a mean of
multiple runs. Lower is better. Source: [6].

vived selection most frequently by a large margin. The figure shows further that modi-
fications to z-rotations and replacements in favor of z-rotations are preferred over gate
deletions.

Regarding the TFI model, shown in Fig. 5.6, we find that the simulated runs show reli-
able convergence, even for a relatively small number of offspring created per generation.
Similarly to the local Hamiltonian, the runs on real hardware show a slower convergence
than the simulated run. Gate noise of deep candidate circuits might be a limiting factor
here.

Finally, the results of the SK Hamiltonian optimization are shown in Fig. 5.7. Again, the
early generations make quick progress and show even faster convergence than the simu-
lation. However, we observe generally slower improvement, and longer stretches without
any progress. These stretches are also present in the simulation case, indicating that the
required mutations to the candidate circuits are more specific, and thus unlikely. Unfor-
tunately, the required number of generations to reach a good solution seems to be much
higher than what we were able to perform, exceeding our feasible quantum computation
time. Simulation, however, progresses after a substantial plateau until around 300 gener-
ations and reaches an energy value of about —23 at 1000 generations. However, Fig. 5.5
(right) gives some insight into the algorithm’s gate and operation preferences during the
optimization of Hgg, which is notably different to the previously discussed local prob-
lem. The mutation operations that tend to be most successful seem to be more cautious
in adding gates to the circuit. A relatively low frequency of gate insertions in comparison
to gate swapping indicates that the circuit requires very specific gates in the right places.
For this problem we start with local o(*)-eigenstates in all qubits, making Ryy gates
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Figure 5.8.: Expected energy versus calls to a quantum computer for GD and ECL, minimizing
an 8-qubit transverse field Ising Hamiltonian. Source: [6].

particularly useful, which we see confirmed by such gates being added predominantly to
the circuit via swapping.

Comparing Quantum Circuit Evaluations

As a last comparison, we want to compare the number of calls to the quantum computer
that ECL requires compared with GD. To this end, we minimize the expected energy of an
8-qubit transverse-field Ising Hamiltonian. GD starts with a random Pauli 2-design ansatz
with 40 parameters, computing derivatives via parameter shifts [125]. These derivatives
are used for parameter updates with a fixed learning rate n = 0.01 (cf. Section 2.2.1).
For ECL, the usual (1 + 4) EA using the gate set U/ is used, as before. Every circuits
is initialized with a random gate. Five runs are performed in total, yielding mean and
standard deviation over the random ansatz and initial parameters for GD, and over the
initial gates and the particular mutations performed by ECL. To eliminate measurement
noise, a noise-free state vector simulator was used.

Results are shown in Fig. 5.8: ECL shows a much faster convergence to a low-energy
solution than GD in terms of the number of calls to the quantum device. The reason for
this behavior is the necessity of GD to perform two calls per parameter, as the gradient
w.r.t. every single parameter has to be evaluated separately. In contrast, ECL performs
only one call for every offspring in each generation, i.e., 4 calls per generation in this
experiment.

This result shows that ECL makes more efficient use of quantum resources than GD,
which scales unfavorably with the number of parameters: While for each additional pa-
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rameter, GD requires two more evaluations of the expected energy w.r.t. to the Hamil-
tonian, the number of calls to the quantum backend stays constant for ECL, saving on
quantum resources and energy.

Concluding Remarks

In this chapter we have seen an algorithm based on an EA that circumvents some of
the disadvantages of VQC: In an iterative process, this method creates a set of quantum
circuits from a parent circuit by mutation, and subsequently selects the best performing
candidate as parent for the next generation. We tested this algorithm called ECL on three
Hamiltonians of varying difficulty, both in simulation and on actual quantum hardware.
On all of our benchmark problems, ECL is reliably able to improve circuits according to
the objective. The performance is decreased in experiments on real quantum devices, as
is expected with NISQ devices.

As we assumed from the beginning, we found that the algorithm exhibits the following
properties: A non-local Hamiltonian requiring entanglement impedes optimization, and
as such, convergence on local problems proceeds faster. Between our experiments using
H,, (with only single-qubit terms) and Hgg (with only Z Z-correlation terms), this in-
crease in hardness is reflected in our results. A high number of correlation terms in the
Hamiltonian implies that more multi-qubit gates are required for ground state prepara-
tion. Creating circuits with these multi-qubit gates in the right place by mutation has
a lower probability compared to single-qubit gates. In addition, such gates are more af-
fected by noise, which we observed in our experiments as a slowing down of runs on
quantum hardware compared to simulation. Our statistics indicate that the circuit design
is indeed somewhat intelligent in that not only useful gates are noticeably preferred, but
also are redundant gates removed over time. The ability of ECL to remove or swap redun-
dant gates, making the resulting circuit more compact and adapted to the Hamiltonian at
hand, is an advantage over gradient methods commonly used for VQE.

While performing the experiments, we recorded the success rates of mutation actions
and their associated gate types. The results demonstrate that all mutation operations (in-
sertion, deletion, swapping, and modification) have considerate success rates across our
experiments, i.e., no operation is completely redundant, and they all work together to
generate useful alterations of the parent circuit, depending on the target problem. This
suggests that the application of evolutionary strategies to quantum circuit optimization
is most effective when a large spectrum of mutation operations is available to the algo-
rithm.

Over time, evolutionary approaches to circuit design have been investigated further, yield-
ing methods that include recombination as an evolution operator [150, 151] or use more
elaborate mutation schemes involving groups of gates [152], showing that the idea of
growing problem-specific quantum circuits remains relevant.
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So far we have seen that AQC in the form of QA can be used as part of a ML pipeline
to perform Feature Selection. Generally, QA is a powerful and versatile tool for solv-
ing discrete optimization problems that arise throughout diverse application areas. In
Chapters 7 and 8, we will investigate two more applications of QA in the form of Quso
formulations of two very different optimization problems. Particularly, in Chapter 7 a
quantum annealer is itself used within an optimization loop. A so-far open question is
whether the results produced by quantum annealers can actually compete with classical
QuBo solvers, and which factors influence the solution quality in NISQ devices.

Although quantum computing holds the promise of speeding up classical computations,
there has not yet been conclusive evidence that AQC is definitely faster than classical
computing resources [153]. While some classical hardware-based QUBO solvers have been
developed as alternatives to imperfect quantum devices [40, 41] to facilitate research and
practical applications, a problem common to all hardware solvers is the limited parameter
precision: In theory, Quso is defined with real-valued weights (see Section 2.2.3), but
digital devices utilize finite number representations, typically binary registers of length
B € {16,32,64}, which can represent 27 distinct values. This necessarily leads to some
loss of precision. The standard solution to this problem in classical CPUs and GPUs is
floating-point arithmetic, as defined by, e.g., IEEE 754 [154].

A problem that is reminiscent of this scenario, but which is specific to D-Wave’s quantum
annealers, is Integrated Control Error (ICE) [155, 75], which randomly distorts the Ising
model parameters, leading to a skewed energy landscape. Depending on the structure
and parameters of the particular problem instance at hand, this distortion may be enough
to change the optimum, as shown in Fig. 6.1: While a classical solver may find the correct
minimizing solution (which may be intractable for large n), uploading the weight matrix
to a hardware solver may lead to perturbations that result in a different minimizing so-
lution. The solution found by the hardware device may be correct for the physical Quso
instance present on the device, but may not correspond to a solution of the original prob-
lem. As the weights on the QA device are analog, IEEE 754 or other types of floating point
arithmetic are not applicable.

Not only quantum annealers, but also digital annealing hardware suffers from the effect of
low parameter precision, due to rounding of problem parameters, e.g., when converting
between floating point formats. There has been very little research investigating the effect
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Figure 6.1.: QuBo solvers have a limited parameter resolution, leading to perturbations E that
may result in false optima. Source: [1].

of rounding or distorting Quso and Ising model parameters on their energy functions.
However, we find that rounding can drastically reduce the probability to find the global
optimum, depending on the parameter distribution: As Fig. 6.2 shows, a low number of
parameter bits and a high DR (see Section 6.2 for details) leads to a higher probability of
changing the minimizing vectors.

In this chapter, we investigate the implications of solving QuBo problems under param-
eter precision constraints. Over its course we will see that DR, a quantity proportional
to the number of bits required to encode QuBO parameters faithfully, is a key factor for
the solution quality under parameter distortions: A smaller DR implies that a Quso in-
stance is more robust against distortion. To formalize this notion, we use the optimum
inclusion relation C introduced in Section 2.2.3, exploring the extent of parameter change
under which this relation remains intact. Finally, we demonstrate techniques to reduce
the DR of a given QuBo instance based on theoretical bounds on the optimal energy value,
which we demonstrate experimentally. The results clearly show that the performance of
QA hardware can be improved drastically following these strategies.

This chapter is based on the publication [5]. The author of this thesis developed the
concept of QUBO parameter compression, devised and proved all theoretical insights,
implemented and conducted most experiments and created their result plots, and
wrote the majority of the article.
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Optimum Correctness

Parameter Bit Resolution

Figure 6.2.: The effect of rounding QUBO parameters to a certain number of bits on the probability
that the optimum remains intact, using random instances of the SUBSETSUM problem
with n = 16. Each line represents the mean taken over 20,000 instances from a
bin containing problems with similar Dynamic Range (DR) (see Section 6.2). See
Section 6.6.2 for details. Source: [1].

Preserving Optima

In this section we investigate how the precision of the QUBo weight representation (specif-
ically after rounding) affects the energy landscape of fg, and how we can evaluate the
minimum number of bits necessary to represent the entries of  faithfully. Using the
concept of optimum inclusion introduced in Def. 2.7, we show that there is a theoretical
lower bound on a scaling factor that preserves at least one of the optima after rounding
the parameters.

Each instance of QUBo has at least one binary vector with minimal energy, which is
global optimum of the optimization problem. As defined in Section 2.2.3, we denote the
set of minimizing vectors of a QUBoO instance Q by S*(Q) # . As mentioned in Sec-
tion 2.2.3, scaling the QuBo matrix with a positive factor « leaves the optima unchanged,
ie, S*(Q) = S*(aQ). Now, the notion @ C R defined in Def. 2.7 expresses the intu-
ition that all minimizing vectors of @ also minimize R, as S*(Q) C S*(R). It formalizes
the idea of preserving optima when making changes to the weight matrix.

Preserving all minimizing solutions of an optimization problem has some clear advan-
tages: For one, we are left with a choice between equally good solutions and can pick one
according to other criteria not covered by the loss function (e.g., lowest or highest numer
of 1-bits). Moreover, when more optimal solutions are scattered across the search space,
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local search heuristics may converge to one of them with higher probability. Preserv-
ing only some solutions is a compromise, enabling us to compress the parameters more
effectively while still leaving optimal solutions to the original problem untouched. As
we have proven that the set of QuBo instances with only a single minimizing vector lies
dense within Q,, in Proposition 2.2, i.e., most QUBO instances have only a single minimiz-
ing vector, maintaining the relation C will preserve all optima anyway in most practical
scenarios.

The Role of Dynamic Range

To proceed, we need to establish a quantity that measures the degree of precision we need
to faithfully represent QuBo weights. To this end, we define the Dynamic Range (DR) of
QuBo instances, borrowing the general notion from signal processing (see, e.g., [156]).

Definition 6.1 (Dynamic Range [1]). Let X C R be a finite set. First, we define the set of
absolute differences between all elements as Dset(X) = {|x —y| : z,y € X, x # y}, and
we write Dyt (X)) = min Dyt (X) and Dyer(X) = max Dot (X). The DR of X is defined as

DRet(X) = log, ( Dyu(X) )

Pt (X) (6.1)

Its unit is bits, and its domain is the positive real numbers, similar to entropy in information
theory. The DR of a QuBo matrix Q) is defined as the DR of the set of its entries:

DR(Q) = DRt (U(Q)), where U(Q) ={Qi; : i,j € {1,...,n}}.

Note that always 0 € U(Q), because Q is triangular, thus Q;; = 0 when i > j. Further we

define D(Q) = Ds(U(Q)). D(Q) = Dsar(U(Q)) and D(Q) = DsrU(Q))-

If the DR of an instance () is large, it requires many bits to represent all weights faithfully
in binary, as its parameters both stretch over a large value range while simultaneously
requiring small gradations. Assum we use k& € N bits to represent unsigned integers. The
value range is 0, 1, ..., 2% — 1, resulting in a DR of log, (2* — 1), which is approximately
equal to k, especially when k is large. For k£ > 1, the number of bits required to represent
the weights can be obtained by rounding the DR up to the nearest integer. Note that
positive scaling leaves DR unaffected, as both the value range as well as the gradations
are scaled by the same amount.

Example 6.1 (from [1]). Consider the following QUBO parameter matrices Q, Q' € Qo:
~[-1 14380 -1 3
o= [0 o[ 5

Matrix Q defines the energy function fg(z) = —z1 + 143802122 — 229. The global
optimum is 2* = (0, 1)T with value fg(2z*) = —2. As we see at a glance, the value Q12
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Figure 6.3.: llustration of Proposition 6.1: W.lo.g. let ﬁ(Q) = 1. By scaling with & > 0 and
rounding, the smallest distance D(|aQ)] becomes 1, while the largest distance obeys
D(|aQ)] < a+1, as the maximal absolute rounding error is 0.5 for both outermost
weights. Source: [1].

is positive and very large, acting as a penalty weight between bits z; and z3. However,
a much smaller value has the same effect, as we see with Q’, which is identical to Q
except for @}, = 3. The global optimum of fg is still 2* = (0,1)T with fo/(2*) = -2,
therefore @ C Q'. When we compare the DRs of Q and @', we find that

pR@ = tog, (U7 5Y) or@) = 1o, (51

~ 13.812 ~ 2.322,

which is a tremendous reduction: While we need 14 bits to encode the elements of @), we
only need 3 for Q’. This demonstrates that, in principle, it is possible to reduce the DR
while preserving the minimizing vectors of the QuBo problem.

A straightforward way to enforce a reduction of DR is scaling and rounding the parame-
ters, which sets the smallest meaningful difference between values to 1. It is easy to see
that this gives us an upper bound on the DR:

Proposition 6.1 (RAounding bounds DR [1]). Let Q € Q,; w.lo.g. we assume that Q
is scaled such that D(Q) = 1. For any @ > 0 the DR of |aQ] is bounded above by

DR(|aQ]) <logy(a+1) .

Proof. Due to normalization we know that D(«Q) = c. By rounding we enforce D(|aQ)] >
1,and D(|aQ)] = a+ € with rounding error € = D(|aQ)] — a. As D(aQ) is the differ-
ence between the largest and smallest weights in @@, and rounding introduces an error
in (—1, 1] for each weight, we find that € € (—1,1), and therefore & — 1 < D(|aQ]) <

272
a + 1. This yields DR(|aQ]) < log,((a + €)/1) < logy(cr + 1). See Fig. 6.3 for a
visualization of this proof. O
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Rounding an instance @, while being an effective way of reducing its DR, does generally
not preserve S*(Q), as it skews the values of fg. We can model this perturbation caused
by rounding after scaling with some ac > 0 as

flo@)(z) = 2T|aQ]z
=2T(aQ + E(Q,))z
=az2'Qz+2"E(Q,a)z
= OzfQ(Z) + fE(Q,a) (z) .

Here, E(Q, ) = [aQ] — aQ € (—3, ] " denotes the matrix of differences between
the real weights and their nearest integers in @ after scaling with o > 0. Dividing by «
after rounding restores the problem’s original scaling, which results in an error on each
entry in @ bounded in (— 5=, 5-]. As we can see, E(Q), o) itself is a QuBO weight matrix,
therefore we can use its energy function as defined in Def. 2.5 and express the total error

on the function value of any bit vector z as

€Q.a(z) = fB(Q)(?) = 2TE(Q,a)z . (6.2)

Representing the error caused by rounding in this way is meaningful, as it bridges the gap
between rounding errors and ICE errors specific to D-Wave quantum annealers: The latter
can be modeled by adding random noise to the underlying Ising model’s parameters J and
h [75], such that, in expectation, this type of error has the same form as Eq. (6.2).

An Optimal Rounding Strategy

Having found an effective way to reduce DR by force, the open question remains how
we can ensure that all, or at least some, of the optima remain intact. Blindly rounding
and checking if |aQ] C Q@ is intractable, as we proved in Proposition 2.1. However, as
we see from Eq. (6.2), the rounding errors’ magnitude relative to the weights’ magnitude
generally decreases as « increases, because Vi,j € [n| : |E(Q,a);;| < 0.5, which is
independent of @ and a. With this knowledge we can bound the error between f|,qQ)/a
and fg within an interval of £C'/a for some constant C' > 0. By choosing « such that the
rounding errors cannot be larger than the gap between the lowest and second to lowest
value of fg, we can guarantee that no non-optimal vector’s value is rounded down to the
optima’s value.

Definition 6.2 (Optimum Energy Gap [1]). Let Q € Q,, and let
y1 = ["(Q) = min fg(z)

zeB”

= min z
V27 st (@) fa(z)

be the lowest and second to lowest energy values w.r.t. fq, then the optimum energy gap
Vq is defined as

QR =Y2 — Y.
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This definition borrows the notion of the spectral gap, which is defined as the differ-
ence between the lowest and second to lowest eigenvalues of a Hamiltonian operator
in physics, such as the Hamiltonian of the Ising model, and is difficult to quantify or
compute [73]. The spectral gap of the Ising Hamiltonian is an important property that
influences the performance of QA (cf. Section 2.4.3). However, we can extend this concept
to any single-objective optimization problem with a real-valued loss function.

It is clear that computing the optimum energy gap is, in general, at least as hard as solving
the QuBo problem itself, which is intractable for large n. However, it gives us a theoretical
lower bound for « that allows for optimum-preserving rounding:

Theorem 6.1 (Optimum-Preserving Rounding [1]). Let Q € Q,, and 7 its optimum
energy gap. Then

n2+n

Va>a": |aQ]C Q where o™ =
4

Proof. Let Q € Q,, be arbitrary but fixed. Recall Eq. (6.2), and that each element of
E(Q.a) = [aQ] — aQ is bounded in (—3, 3] for all & € Ry. Let 2’ € 5*(Q) and
Z = argmin_, cgn\ g+ (Q) fq(Z"),ie., vectors of second-to-lowest and lowest energy w.r.t.
the Q-instance. Then we find that for all o > 0,

fl0@1(2) = fla@1(2) = (fa@(2) + €q.a(2)) — (fa@(Z) + €q.a(2"))
= faQ(z) - faQ(z/) +€Q,a(z) - EQ,a(z/)

Yo
n n
= YaQ + Z Z E(Q,®)ij(zizj — z2}) -
LT Ly efmio
E(— n2:n’n22—n]

This shows that the error on the optimum energy gap caused by scaling and rounding
_n2+n n’+n

is in the interval (—"5=, "], From Def. 6.2 it is clear that Voo > 0 : 7,9 = avq.

To ensure that the rounding error cannot surpass a7yg, we have to choose a such that

2 . . . 2 . 2
ayQ > "™, which implies o > ’Z,Yz". Defining o* = 727‘;" concludes the proof. O

As this bound assumes many worst cases, it is rather loose and depends on factors such
as the sparsity of @, the Hamming distance between z and 2/, and the specific non-zero
values of Q. Some simple refinements can be made: E.g., if we know that ) has exactly
K non-zero entries, the bound can be made sharper by setting a* = K /(27¢q). However,
it ultimately depends on v¢q, which we cannot compute in practice. As the value of o*
depends inversely on 7q, the proof still holds for any lower bound of ~q.
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QuBo Parameter Compression

So far we have seen that scaling and rounding reduces the DR of a QuBo instance reliably.
However, ensuring that its optima are preserved, we need access to its optimum energy
gap, which is intractable to compute. This leaves us, up to this point, with only a theo-
retical strategy to compress parameters. In this section we develop practical strategies to
reduce the DR while keeping (a subset of) optimal vectors intact. To this end, instead of
rounding all parameters at once, we modify single parameter values while trying to stay
within bounds guaranteeing that a minimal solution stays minimal, and a non-minimal
solution does not become minimal.

Justified by Proposition 2.2, we assume for now that a QuBo instance Q € Q, has a
unique global minimizer 2* of value y* = fg(z*). The two competing objectives of
(i) reduing the DR and (ii) maintaining the optimum inclusion relation can be summarized
as a constrained optimization problem, where we want to find a matrix A* € Q,, such

that
A* =argmin DR(Q + A)
A€Qy (6.3)

st. Q+ALCQ.

The scaling and rounding strategy simply sets A* = E(Q, «*), which is, however, by
no means guaranteed to be the globally optimal solution of Eq. (6.3) (in fact, it is most
definitely not in the majority of cases). To better approach this problem step by step, we
update the elements of Q sequentially, setting Qy; — Qi + wg; for a series of index pairs
k.l €{1,...,n} withk <. The general idea of iterative improvement by applying small
changes is adjacent to the approach in Chapter 5, where quantum circuit are modified in
a similar fashion.

In the following sections we will discuss how to choose the value wy,; to update the corre-
sponding QuBo weight without changing the optimum. Later, we will see how to choose
the indices k and [/, but for now, accusem that & < [ are arbitrary but fixed.

Bounding the Minimal Energy

Recall the notion of binary vector subspaces B}, defined in Def. 2.4. If we fix one or
more bits at indices I in a binary vector to constants, we implicitly define subspaces of
B", one for each possible assignment of variables indexed by I, i.e., 211 in total. Each
subspace has its own set of minimizing binary vectors w.r.t. fg.

Definition 6.3 (Subspace Optima [1]). Given Q € Q,, indices I C {1,...,n} and an
assignment z € B!, the subspace optima are defined as

STe=(Q) ={s": s" € B} ., fq(s") < fq(s) Vs € BT,
Note that S7,__(Q) N S}, ./ (Q) = 0 for any z, 2z’ € B" with z # 2/, as subspaces are

always disjoint. For this reason, we can choose an arbitrary but fixed element 2z}, <
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¥ an(@) as a representative for all (a,b) € B2, whose value we denote by y*, =
fq(z},). For brevity, we write B}, , instead of IB%’{Z’].} (ap)T Further, we write ab in-
stead of kI < ab in the index of vectors and scalars, making k¥ and [ implicit from now
on.

Naturally, the minimal values y, are just as hard to compute as solving the original
Quso itself. Instead of computing the exact values, we assume that we have upper and
lower bounds for them, which are much easier to compute, and which we consequently
to determine the update parameter wy;.

Definition 6.4 (Subspace Minimal Energy Bounds [1]). Upper (lower) bounds for y, are
denoted by §ap (Yap), such that

Jab < Yy < Gab, V(a,b) € B> .
Further, let
Y, = min{0, min{Joo, Jo1, G0} — Y11}
i, = max{0, min{goo, Yo1, Y10} — 11}
ifk # 1. Otherwise, when k = [, let y,; = min{0, goo — 911} and y,jl = max{0, Yoo — J11}-

Theorem 6.2 (Optimum-Preserving Weight Update [1]). Let Q € Q,,, and assume
we perform an update Qy; — Qg + wyy. Given y,; and y,':l as defined in Def. 6.4, then an
optimum is preserved as long as

Y < wu < Y (6.4)

Proof. We focus on the case k # [, the case £ = [ is analogous. The global mini-
mum energy y* must be equal to exactly one of the four subspaces’ minimum energies
Yoos Yo Y10, ¥i1- Notice that changing Q; by wy,; affects only y7;. Assume 2* # 27,
then an optimum is preserved if

Y1+ we >y
< Yl + wir > min{yg, Yo1, Yiot
< 11 + wig > min{Yoo, Yo, Y10} - (6.5)

Furthermore, wy; can take any positive value, since y]; > y*. Combining this observation
with Eq. (6.5), we end up with the lower bound

wyy > min{0, min{goo, Jo1, J1o} — Y11} = yp; - (6.6)
If 2" = 2|, we can similarly deduce an upper bound
wyy < max {0, min{oo, Jo1, Y10} — Y11} = 5 - (6.7)

Combining Eqgs. (6.6) and (6.7) we obtain Eq. (6.4). O
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r R R
— —
Yoo Joo Yoo oo
_ —
Jo1 Jo1 Jo1 Jo1
—_ [ ——
J10 J10 10 J10
— —
Y11 J11 J11 J11
| — ——
mlnab{yab} Y11 Y11 mlnab{yab}
P11 > min{goo, Jo1, Yro} = 2" # 271. 911 < min{oo, Jo1, Y10} = 2" = 271.

Figure 6.4.: Visual proof of Proposition 6.2 for ab = (1, 1): The green bars represent the inter-
val the global optimum must fall into. Left: When the lower bound for a subspace
B, is greater than an upper bound of any other subspace, we can conclude that

z, cannot be optimal. Right: When an the upper bound for a subspace B}, ., is

lower than the lower bounds of all other subspaces, we can conclude that 2, is op-
timal. Source: [1].

Equation (6.4) uses bounds (.5 and 745) on the true optima y, to define an interval. If
we choose wy; within this interval, the optimum is preserved. Under certain conditions,
these bounds can also be used for determining optimality of 27,.

Proposition 6.2 (Optimality Conditions [1]). The following implications hold:

Yap > min ({Joo, Yo1, Y10, Y11} \ {0ab}) = 2° # 23 (6.8)
Uab < min ({Foo, Yo1, Y10, Y11} \ {Jar}) = 2° = 2 (6.9)

Proof. We focus on the case k # [, the case k = [ is analogous. Assume that Eq. (6.8)
holds, i.e.,

Uab > min ({Joo, Yo1, J10, Y11} \ {Gab})

= yZb > min ({yg()a ySlv yTO? yil} \ {y;b})
Syn>y T F gy

The result in Eq. (6.9) follows analogously. See Fig. 6.4 for a visualization. O

If Eq. (6.9) is fulfilled for some two-bit assignment ab, we can fix z; = a and 2; = b and
reduce the QuBo size. This is very similar to the concept of strong persistence discussed
in [157, 158, 92]. Knowing z* # 2|, we can discard the upper bound Eq. (6.4) (cf. proof
of Theorem 6.2).

After establishing the implications we can derive from lower and upper bounds on min-
imal energies in subspaces y,, the questions remains how to actually compute them.
Every particular energy value of a QuBo instance @ is an upper bound on the minimal
energy. Therefore, weak upper bounds can be computed very easily by evaluating the
zero vector within the subspace:
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Proposition 6.3 (Simple Upper Bound [1]). Let &, [ be two indices with 1 < k <[ <n
and (a,b) € B? a variable assignment. An upper bound for y, is given by

Yop < fQ(aey + bey).

Tighter upper bounds can be found by investing more computational effort, e.g., by per-
forming a random or local search within B}, ., and recording the lowest observed en-
ergy value.

To derive simple lower bounds we can take only the negative entries of Q@ and compute
the lowest possible sum that can be formed from them.

Proposition 6.4 (Simple Lower Bound [1]). Let %,/ and (a, b) as before. Define Q~
such that Q;; = min{0, Q;;}, i.e., the matrix containing only the negative values of Q.
Then a lower bound for 7, is given by

yc*zb > fQ— (ln + (CL - 1)6k + (b - 1)el).

We can find a significantly tighter bound by exploiting roof duality [159, 160], which de-
rives lower bounds by determining the maximum flow of a corresponding flow network.
The complexity of this algorithm is polynomial.

Reducing the Dynamic Range

Now that we have defined intervals wherin a single weight of a QUBo instance can be
chosen without changing the optimum, we turn to the main objective of Eq. (6.3), i.e., we
need to compute weight updates that actually reduce the DR. In the following we present
multiple strategies to achieve this goal.

For convenience, we define m = n? as the number of entries of an n X n square matrix.
The real-valued elements of Q € @, can be put in ascending order, giving rise to a
function 7 : {1,...,m} — {1,...,n}? with the defining property Qr(i) < Qr(it1) for
all 1 <17 < m. As ashorthand, we define ¢; = Qﬂ(i) V1 < ¢ < m. This allows us to write
some of our previously defined quantities more concisely, e.g.,

min U(Q) = q1,

max U(Q) = gm,
A(Q) =dm — q1,
(@)

Note that, as @ is upper triangular, about half of all ¢; are 0.

Theorem 6.3 (DR-Reducing Weight Update [1]). Let Q € Q,, and 7(¢) = (k,) with
k <land Qg # 0. When adding a value wy; € R to @y, the DR does not increase, i.e.,
DR(Q) > DR(Q + wyexe]), if the following two conditions hold:
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1. wg, is bounded by

a—q+1{l=m}(gn-1—aqm) — D) <wp < qm—q+1{{ =1} (g2 — 1) + Dy,

=:d, ::dz—
(6.10)
2. wy; does not decrease the minimal parameter distance:
‘q€+wkl_Qi| ZD(Q)a V7’€{177m}\{£} (6-11)
V q+wi €UQ), (6.12)

where Dj is defined as

Dset({qu tu 7é e}) o 1) )

D; =b<Q>( o)

Proof. We only consider an increase of the QuBo parameter ()i, i.e. wg; > 0, since the
results for decreasing (Ji; can be deduced analogously. Firstly, consider the parameters
q > q. If

Wit < gm — Qe (6.13)

then D(Q) is not increased and thus to avoid an increase of the DR, D(Q) should not be
decreased (see Eq. (6.1)). This can be achieved by maintaining a distance of at least D(Q)
to all other QuBO parameters, i.e.,

g0 + wir — gi| > D(Q), Vi # ¢, (6.14)

or assuming the exact value of an already existing QUBO parameter, i.e.,

Qv + wg € U(Q) (6.15)

If the current maximum value is overshot, i.e., wi; > ¢mn — qp, then ﬁ(Q) is increased,
and in order to reduce the DR, D(Q) has to be increased as well. This can only happen if
q¢ is unique and part of the minimum distance, i.e., Dset({q1, - - -, @0—1, Q0415 - -, Gm}) >

D(Q). The change wy; can then be bounded by

DR (Q) > DR (Q + wyere])

Q) - VD(Q)“‘QE‘i'wle_Qm
(Q) ~ min{Dset({qu : u # £}), D(Q) + wg }
S 15(9) + Qe + W — Gm
Dser({qu = v # £})

& wy < gm — g+ D(Q) (Dset({qbu(:Qt)t 74) 1) '

-

5

Q
Q
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Secondly, consider £ = 1. If the smallest value ¢ is not unique, we can also deduce bounds
Egs. (6.13) to (6.15). On the other hand, when the smallest value is unique (g2 — q1 > 0)
the increase ¢ +wy; > ¢, does not necessarily increase ﬁ(Q) Ifwg; > g2 —q1, @1 +wpy
is not the minimum value anymore but ¢, is. Thus, the difference go — g1 can be added
to the bound in Eq. (6.13)

W < (gm —q1) + (@2 —q1) = @m — 21 + @2 -

Additionally, if g; is part of the unique minimum distance, we can add g2 — ¢ to the
bound in Eq. (6.16)

- Dyer({gu = u € [m]\{€}})
W < gm — @1+ g2 — @1+ D(Q) ( = -1). (6.16)
D(Q)
For a negative change wy; < 0, similar bounds can be obtained analogously. O

Theorem 6.3, and Egs. (6.10) to (6.12) in particular, provide loose bounds on feasible QuBo
weight changes which we can safely apply. In the following sections, we discuss several
heuristic approaches to choose specific values within these intervals.

. Heuristic Compression Strategies

Our bounds on wy; give us some freedom regarding the amount of change we want to
allow for Q. Firstly, we will look at a greedy strategy that exploits the interval fully to
reduce the DR as much as possible. Afterwards, we will see how we can restrict our choice
of wy, further to maintain certain properties of Q.

Greedy Strategy This strategy will be denoted by G. Let (k, 1) = (), as before. The
parameter Q; is increased if gy < 0, and decreased otherwise. For increasing (decreasing)
Q11 we choose w,?l maximally (minimally) within the interval given by Theorem 6.3, i.e.,
w,?l = dj (wg’l = d, ). However, if the updated parameter Qy; + w,gl is too close to
another parameter and would cause D(Q) to decrease, we set it equal to the next smaller

(larger) parameter:

dz ifqg<0/\min{’qg+dj—qi‘: i;éﬁ}zD(Q),
WG = max{q; : ¢; <q+dj} —q fq<O0Amin{|q+df —q|: i £} < ?(Q),
d, ifCJzZO/\minﬂqe%—d[—qi‘: i £} > D(Q),
min{q; : q; > q/+d, } —q otherwise.
(6.17)
Again, recall that there is always a ¢, = 0 for some u € {1,...,m}, therefore it is

always possible to set parameters to 0. This is particularly useful for QA devices, because
a parameter of 0 does not require a coupling between the qubits indexed by k£ and [,
allowing for more flexibility in the assignment between logical and physical qubits. For
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this reason, we also introduce an alternative strategy Go, which prefers the value 0 if it
falls within the interval:

—q fqg<O0Aq+df >0,
w =< —q ifq>0Ag+d; <0,

w,?l otherwise.

Maintaining the Parameter Ordering So far, we allowed the weights to cross over
other weights, which changes their internal ordering. Another intuitive strategy to pre-
serve the optimum is to maintain this ordering by not allowing weights to cross over
neighboring weights. We call this strategy M. To this end, we define bounds on each
QuBo weight ¢, as

¢ =min{q : ¢ > q}, (6.18)

g =max{q : q < qut#L},
QZ:min{qt: qtzq&t#g}v

G, =max{q : q <qe,}. (6.19)

Given that all entries of @) are unique, we find that cj; = ¢, and (jéF = ¢, , meaning that
these bounds on ¢, differ only if Q) contains duplicate weights. See Example 6.2 for an
example of these bounds. Now, we want to update ¢y to lie exactly in the middle between
qf and q?t, which we denote by q’f If g1 < qv < qm, we increase qp if g — g, < (jZ' —q
and decrease otherwise, which gives us the update value

M QZ - Hun{qu+ —qe,qe — @7;}, lfC_IZ - (j; < (jzr — qe,
Wl =\ — A b .
g, +min{q, —qe,q¢ — g, }, otherwise.

We have to address the edge cases { = 1 and ¢ = m separately, as there is no midpoint
as before. For £ = 1 we define w,/:,'} as

wM = i —a - D(Q), if Dset({gu : u>1}) = D(Q),
M D(Q) — Dgt({qu : u>1}), otherwise.
Analogously, for £ = m the weight update becomes
’LUM _ Q;L_Qm"i_D(Q)v istet({qu : u<m}) :D(Q),
M Deet({qu : u < m}) — D(Q), otherwise.

Now that we have several strategies for computing weight updates to reduce the DR, we
can determine the actual weight update wy; by

wiy = min{max{wpy, ¥, }. vi; } (6.20)
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D(Q)
D(Q) °
«o o o ° ° R
—-1.5 —-1-0.8 0 0.4 1

(a) We can read off D(Q) = 2.5 and D(Q) = 0.2.
[ J

[ J [ }
-~—@ *—©@ @ @ o— R
ar s dr q14y 547 G 47 .qr, 7 i

(b) Bounds (Egs. (6.18) and (6.19)) on QuBo parameters ¢; = —1 and g7 = 0.4.

Figure 6.5.: Sorted QuBO parameters of the matrix given in Eq. (6.21). Duplicates are indicated
as vertically stacked points. Source: [1].

where 1 € {G, Gy, M} is one of our heuristics. Clamping wj; within [y;;,y;;] ensures
that our change does not fall out of the bounds that preserve the optimum. The following
example illustrates how the method described in the following sections is applied to an
actual QUBo instance.

Example 6.2 (from [1]). We define an arbitrary QuBo instance Q € Q3 as

~1 04 1
Q=1|0 04 —08]. (6.21)
0 0 -15

We can compute its DR to find DR(Q) = log,(2.5/0.2) = 3.64. If we put the parameters
in order, we obtain

(¢1,-..,q9) = (=1.5,—1,-0.8,0,0,0,0.4,0.4, 1),

which are shown on the number line in Fig. 6.5. We show the bounds computed from
Egs. (6.18) and (6.19) for two exemplary weights in Fig. 6.5b. The value Q235 = ¢q3 =
—0.8 should be increased, as this leads to a decrease of D(Q) and, consequently, the
DR. Therefore, we fix k = 2, ] = 3. This small example allows us to easily see that
z* = (0,1,1)7 is the minimizing binary vector of Q. To maintain z* as the optimum
when changing ()23, we need to stay within the bounds given by Theorem 6.2: Again, for
this small example we compute the tightest possible bounds as

Yoo = 0, o1 = —1.5, 910 = 0.4, y11 = —1.9,

giving y;; = min{0, —1.5,0.4} — 1.9 = 0.4. This tells us that we can increase Q23 by at
most 0.4 while maintining the optimality of 2*, as seen in Fig. 6.6a. For our main objective
of decreasing the DR we turn to the three heuristics G, Gy and M, whose values come out
as w,/:’l‘ = 0.3, w,?l = 1.6 and w,?lo = 0.8, as shown in Fig. 6.6a. We find that M moves
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—1.5 —1-0.8 0 0.4 1

(a) Parameter value intervals: Maximum increase y5; = 0.4 (blue) of QUBO parameter Q23 such that the
optimum is preserved, along with heuristic interval limits w5y = 0.3 (cyan), wS; = 1.6 (green) and
wgg = 0.8 (yellow).

G7 GO
~~
~—@ @ @ L 4 L 4 o— R
~
—-1.5 -1 M 0 0.4 1
(b) New parameters after changing Q23 = —0.8 w.r.t. preserving the optimum: min{y3, w3} = 0.3 for M

(cyan), and min{y;37 wgg} = 0.4 (yellow) for G (and Go analogously). In both cases, the DR decreases
by one bit, since D(Q) is doubled.

Figure 6.6.: Change of QuBO parameter (J23. Source: [1].

(223 to the midpoint of its neighbors. G increases (23 as much as possible to reduce DR
greedily as much as possible, while Gg sets (Q23 to 0. Figure 6.6b shows the final changes
for all three heuristics. According to Eq. (6.20), the final weight update ws3 is 0.3 for M
and 0.4 for both G and Gy. All lead to D(Q) becoming doubled, which decreases the DR
to 2.64, saving one bit.

Choosing the Next Parameter

The last open question is how to decide which pair of indices (k, ) we should apply our
aforementioned DR reduction strategy to. The simplest way would be to either (i) pick
a random pair of indices, or (ii) iterate over all index pairs in sequence. Both of these
methods become increasingly inefficient with growing n, as only a few different param-
eters directly determine the DR, namely those that directly define D(Q) and D(Q) (cf.
Fig. 6.5a), i.e., at most four. Changing any other parameter can only ever increase the DR,
not decrease it. This realization leads to the much more efficient strategy of only choosing
(k,1) among those index pairs whose parameters determine DR. From this point onward,
we determine (k,[) by (i) computing the update values for all (up to) four index pairs,
and (ii) greedily choose the one that leads to maximal DR reduction, choosing randomly
whenever we encounter a tie.

Parameter Compression in Practice

We conduct a series of experiments that serve to demonstrate that the method described
in the previous sections reduces the DR in practice. To this end, we the DR values of
various QUBO instances before and after applying our method. Lastly, in Section 6.6.2 we
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Figure 6.7.: DR ratio for different QuBo sizes n € {4,8,12, 16} over time. Source: [1].

compare the solutions obtained from a QA device using the uncompressed and compressed
versions of the same QUBO weight matrix to show that a low DR does, in fact, improve
solution quality.

Results for Random Instances

We try all compression heuristics discussed in Section 6.4.2, namely G (greedily choose
the parameter update that leads to the greatest DR decrease), Gg (like G, but prefer 0
values), and M (restrict bounds such that the parameter ordering remains intact), all of
which are implemented as part of the Python package qubolite’®.

As a benchmark, we generate 1000 random QUBO instances each for n € {4, 8,12, 16},
whose weights we sample uniformly from the interval [—0.5,0.5]. To each instance, we
apply each heuristic given in Section 6.4.2 seperately for 1000 iterations. The upper
bounds ¢, are found through a local search from a random initial binary vector. For
the lower bounds ¢,;, we use the roof-dual algorithm [159]. Additionally we compare the
two methods described in Section 6.5.1, i.e., choosing the next QuBo weight randomly or
greedily by its impact on the DR.

The results are shown in Fig. 6.7 as the DR ratio over time between the compressed and
original QUBO matrices, that is DR(Q + A)/DR(Q). The 95%-confidence intervals are
indicated. As expected, the DR ratio decreases monotonically, showing that all heuristics
do in fact reduce the DR. We observe that the decrease is more pronounced for smaller
n, indicating that DR reduction gets gets more difficult the more parameters the instance

Yhttps://github.com/smuecke/qubolite (last accessed June 3, 2025)
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Figure 6.8.: DR ratio for random Q-instances (n = 16) of varying densities. The mean DR ratios
over 500 random instances per density value are shown as circles, their respective
standard deviations as the area around them. Source: [1].

contains. This is also reflected in the parameter choice strategy, as choosing greedily by
highest DR reduction leads almost always to a better overall reduction, except for n = 4.
However, the greedy strategy comes at a higher computational cost, as all bounds on
all relevant parameters have to be evaluated. For increasing n we further observe that
M performs better than G, but worse than Gy, which shows that the strategy of setting
weights to 0 when possible, reducing the overall number of unique parameter values in
the process, turns out to be quite effective.

Lastly, we observe relatively quick convergence to a minimal DR ratio for all heuris-
tics, with overall faster convergence for small n. As mentioned before, for larger n the
minimum DR ratio approaches one, i.e., a smaller overall improvement is achieved. The
iterative procedure most likely reaches a local optimum where no weight can be further
modified without changing the minimizing vector. As the number of weights grows as
O(n?), this naturally occurs faster when 7 is small.

An implication that arises from this last observation is that DR reduction should be more
effective when the QuBo weight matrix is sparse: To test this, we sample Q-instances with
n = 16 like before, but set each individual weight ();; to 0 with probability 1 — p, where
p € [0, 1] acts as a density parameter. This gives us weights matrices whose upper triangle
has, in expectation, p non-zero parameters. For each value p € {0.10,0.15,0.20,...,1.00}
we sample 500 QUBO instances, apply to each 500 iterations of the Gy DR reduction
heuristic, and compute the final DR ratio. We choose fewer iterations here because of
the quick convergence we observed in the previous experiments. The result is shown in
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Fig. 6.8. Clearly, a low density (high sparsity) strongly correlates with a lower DR ra-
tio, supporting our theory that the number of parameters is the decisive factor for the
performance of DR reduction.

Using sharper bounds could improve performance further, but they require more compu-
tational effort. For instance, computing the roof dual bound has time complexity O(n?).
It is expected that clever implementations of the bounds could exploit the iterative na-
ture of our DR reduction strategy, allowing for re-use and incremental updating of data
structures (i.e., the flow network constructed for the roof dual bound), reducing the com-
putation time drastically.

Impact on the Energy Landscape Some heuristic optimization methods behave dif-
ferently when the ranking induced by the loss value of solution candidates changes due to
DR reduction. For example, if for two distinct binary vectors z and 2’ we have fg(z) <
fq(#'), but f5(2) > f5(2') using the compressed instance Q. an EA (see Section 2.2.2)
would prefer 2’ over z using Q, changing the convergence behavior. For this reason, we
briefly investigate the effect of DR reduction on the ordering of binary vectors induced
by the energy function.

To this end, we need to define the notion of the induced ranking of a QuBo instance, and
a way to quantify the similarity of such rankings.

Definition 6.5 (Induced Ranking [1]). Let Q € Q,,, and let 2, 2%, ..., 2" be the binary
vectors of B™ in lexicographical order. The induced ranking of Q is a permutation g €
{1,...,2"} = {1,...,2"} such that

fo(z™W) < fo(zmH)vic {1,...,2" — 1} .

Definition 6.6 (Kendall 7 Distance [1]). Let w, 7’ : {1,..., K} — {1,..., K} be two
permutations for some K > 1. The normalized Kendall 7 distance between 7 and 7’ is
given by
Kalmr) = 5+ e 3 sign [(n(i) = x(3) - (2'()) — 7'(7)]
A 2 " K(K—1) ‘

1<i<j<K

Intuitively, the Kendall 7 distance is the proportion of disagreement between rankings
over all index pairs, i.e., the percentage of (4, j) such that (i) < 7(j), but ©’(7) > 7'(j),
and vice versa. If K (m, ') = 0, then 7 and 7’ are identical, and if K4(7,7") = 1, then
7’ is the exact reverse of 7. For this reason we find that by computing K4(7q, 7Q+4) we
obtain a useful measure of how strongly the DR reduction heuristic scrambles the energy
landscape defined by fq.

In Fig. 6.9 we compare the Kendall 7 distance between the induced rankings of random
QuBo instances before and after their DR reduction using all heuristics. We find that
the compressed instances resulting from G and Gy have to a much larger distance to their
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Figure 6.9.: State ordering for different QuBo sizes n € {4,8,12,16}. Source: [1].

original instances than those resulting from M. This was expected, as M preserves the in-
ternal ordering of parameters, which consequently leads to more conservative parameter
changes, reducing the overall magnitude of noise added to the energy landscape.

Lastly, we analyze the number of unique parameter values of uncompressed and com-
pressed QUBO instances. Figure 6.10 shows the unique weight ratio, i.e., the number of
unique QuBo weights of the current iteration divided by the number of unique Quso
weights of the original QuBo. As expected, M does not allow weights to cross over their
neighbors’ values, thus never changing the number of unique weights. For G, the num-
ber of unique weights initially decreases, but then starts to increase again when more
and more weights with non-unique values are changed to exploit the full range of their
optimum-preserving intervals. On the other hand, using G°, the ratio decreases seem-
ingly monotonically, as the preference of 0 weights leads to fewer and fewer non-zero
parameters.

Results on Quantum Hardware

In our last experiment, we want to quantify the extend that DR reduction can improve
the performance of real quantum hardware. To this end, we (i) generate a QUBO instance
Q. (ii) apply DR reduction to obtain @Q’, (iii) apply QA to both @ and Q’, performing
multiple readouts, and (iv) compare the occurrence probabilities of the global minimizing
vector.

Instead of using QuBo instances with randomly sampled weights, we use two exemplary
real-world problems, BINCLUSTERING and SUBSETSUM. BINCLUSTERING stands for binary
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Figure 6.10.: Percentage of unique QUBO parameter values for different sizes n € {4,8,12,16}.
Note that the line for method M (random) is constantly 1. Source: [1].

clustering and is an unsupervised ML task, where data points are assigned to one of two
classes (or clusters) [9, Sec. 13.2.1]. SUBSETSUM is the problem of finding a subset from
a list of values that sum up to a given target value. Both have well-established Quso
embeddings [38, 161]. We choose these as our example problems as they are (i) real-world
problems of both scientific and economic interest, (ii) easy to generate for arbitrary n, and
(iii) their corresponding QUBO instances’ DR can be controlled by changing the input
data accordingly. This last point in particular demonstrates that QuBo instances with a
high DR can arise purely as a consequence of the original problem’s input data, which
we exploit to generate realistic high-DR QuBo instances (i.e., instances with a tangible
connection to a real-world problem).

Generating a BINCLUSTERING Problem We generate input data for BINCLUSTERING
by sampling i.i.d. n = 20 2-dimensional points from an isotropic standard normal dis-
tribution, which we divide into two clusters by adding 4 to the first component of the
first ten points, and by subtracting 4 from the first component of the latter ten points.
This moves the points apart, creating two clusters. Lastly, we choose points 1 and 19 and
multiply their coordinates by 20, which leads to a data set containing two outliers with a
large magnitude (see Fig. 6.11).

From this data we derive a QuUBo instance @ using the method from [38] using a linear
kernel, which yields a standard 2-means clustering based on Euclidean distance. As a
binary cluster assignment is symmetrical, we ensure that the QuBo problem has only one
optimal solution by assigning class 0 to point 20, leaving only 19 points to optimize over.
The QuBo weight matrix is shown in Fig. 6.12a. The color scale aptly illustrates the high
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20F

X2

0F "
—50 0 50
X1

Figure 6.11.: 2D data set used for BINCLUSTERING, consisting of 20 points. The two outliers
(shown in a different color) lead to large values in the Gram matrix, from which
the QUBO parameters are derived, leading in turn to a large DR. Source: [1].

DR of 22.7921: Three weights have a very high magnitude while all others have a low
magnitude, making them almost appear to have the same value.

We apply heuristic Gg to @, since it seemed most promising in Section 6.6.1, having the
additional benefit of making QUBo instances sparser. As before, we use a local search and
the roof-dual algorithm for computing optimum-preserving bounds. To limit execution
time, we give our algorithm a fixed budget of 100 iterations. The compressed QUBO in-
stance Q' is shown in Fig. 6.12b. Clearly, much more detail is visible, as the color scale
is much narrowerWe find that DR(Q’) = 11.0427, which is a reduction by more than
half.

Generating a SUBSETSUM Problem In a similar way, we generate a SUBSETSUM prob-
lem, whose input data consists of a list A = (ay, ..., ay) of n integers and a target value
T. The task is to find a subset S C {1,...,n} such that ), ga; = T. This problem
lends itself naturally to QUBO, where we use n binary variables which indicate if i € §
for each ¢. The energy function is simply

2
f(x) = <Z a;x; — T) X Z A;a;T;T5 — QTZ aiLq,
i i, i
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Figure 6.12.: QuBO parameter matrices for BINCLUSTERING and SUBSETSUM problems, before
(left) and after (right) applying DR reduction. Difference in DR are illustrated by
the color scale, rendering most parameter values in the original QUBO matrices in-
distinguishable, which is greatly improved on the right. Source: [1].

such that the QuBO parameters become

2a;a; ifi #j
Qij :{ !

a? —2Ta; otherwise.

We set n = 16 and sample the elements of A iid. as |[10 - Z]|, where Z follows a stan-
dard Cauchy distribution?’. This distribution is heavy-tailed, leading to occasional out-
liers with large magnitudes.Next, we sample the number of summands & from |U | where
U follows a triangular distribution with parameters a = %, b= % and ¢ = 4?", so that,
on average, half of the elements of A contribute to the sum. Finally, we sample & indices
from {1,...,n} without replacement to obtain S, and set T' = ) ._¢ a;. This sampling
scheme was also used to generate Fig. 6.2. We use the same DR reduction method as be-
fore, but allow for 150 iterations. The weigt matrices are shown in Figs. 6.12c and 6.12d,

which have a DR of 25.6765 and 9.8882 respectively. Again, the achieved compression

Y X,Y ~N(0,1), then Z = X /Y has standard Cauchy distribution (see, e.g., [162]).
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Figure 6.13.: Relative energies of 1000 samples obtained from the D-Wave quantum annealer for
the original (dark blue) and compressed (yellow) QuBo instances. The samples are
sorted in ascending order of energy. Lower is better. Source: [1].

reduces the number of required bits to encode this problem significantly, bringing the
magnitude of the color scale from 108 down to 102,

We attempt to solve all four QuBo instances (both uncompressed and compressed for each
of the two problems) on a D-Wave quantum annealer. To this end, we use the Advantage
system 4.1, accessed through a Python interface. The D-Wave annealers have a fixed
connectivity structure, i.e., only a subset of physical qubit pairs can be assigned a weight
(cf. Section 2.4.3 under Limitations). Therefore, dense QUBO problems (as BINCLUSTER-
ING and SUBSETSUM) must be embedded into this connectivity graph structure through
redundant encoding and additional constraints. This is done automatically by D-Wave’s
Python package?!. To eliminate the embedding as a contributing factor, we have this em-
bedding computed once for the original QuUBo and re-use it for the compressed one. This
is possible because they have the same size, differing only in parameter magnitudes. In re-
ality, one would indeed choose to re-compute the embedding, as the compressed instance
is likely to be sparser and easier to embed.

For each QuBo instance, we perform 1000 readouts and record their energy values. The
annealing time per read is 20ps. Recall that the DR reduction method only keeps the
solution vectors intact, but changes the specific energy values, which makes them incom-
parable to the original. For this reason, we compute the ground-truth minimal energies

Zhttps://docs.ocean.dwavesys.com/en/stable/concepts/embedding.html (last accessed June 3, 2025)
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6.7. Concluding Remarks

v* for both @ and @', and plot the relative deviation of the measured energies v w.r.t.
these values, |(v* — v) /v*|, along the y-axis in Fig. 6.13.

The figure clearly shows that the compressed QUBo instances yield the global optimum
with much higher frequency than the original, uncompressed instances with high DR. We
verified that the vector of minimal energy in the compressed QuBo instances indeed yield
the minimal energy of the original problems, confirming that the DR reduction method
preserves the optimum correctly. In order to quantify the improvement more accurately,
we evaluate the samples obtained from the compressed QUBo instances using the original
(uncompressed) QUBO’s energy function. Inspecting the number of samples with an en-
ergy equal to or lower than the lowest sampled energies obtained from the original Quso
instances reveals that the prevalence of low-energy solutions is 17.76 (237) times higher
when using the compressed BINCLUSTERING (SUBSETSUM) QUBO instances. This leads to
the conclusion that DR reduction using the Gy heuristic helps a quantum annealer to find
the optimum more reliably, most likely by reducing the relative magnitude of ICE.

Concluding Remarks

QC is limited by the available hardware, and QA is no exception. While in theory, AQC
is a formidable problem solving tool, its practical implementation relies largely on hybrid
algorithms and heuristics. One particular limiting factor is the precision with which Quso
(or Ising) weights can be represented on QA devices. We have seen that a large value
range and, at the same time, fine weight gradations leads to unwanted rounding and loss
of precision.

In this chapter we discussed the role of DR in this conect, identifying it as a central factor
influencing the performance of near-term QA devices. Utilizing the theoretical notion
of optimum inclusion introduced in Def. 2.7, we defined the difficult task of reducing a
particular problem instance’s DR while maintaining at least one of its minimizing vectors.
Firstly, we considered rounding as a fool-proof method of reducing the DR by forcing the
smallest parameter-difference to 1. Based on this, we derived a theoretical bound on the
minimal scaling factor & we need to apply before rounding in order for [aQ] C Q. As
it is not possible to efficiently compute this factor in practice, neither to directly evaluate
Q C Q' as shown in Proposition 2.1, we devised a method to iteratively modify the
parameters of ) while maintaining the relation. To do this, we require upper and lower
bounds on the optimal energy of QuBo instances, which we use to define intervals within
which a single parameter value can be varied without consequences.

Based on these findings, we devise three heuristic strategies to modify weights iteratively
with the aim of reducing the overall DR in the process. In doing so, we were able to in-
corporate knowledge about the architecture of contemporary QA devices, which have a
restricted topology and benefit from sparse QuBo instances, which the strategy Gg ex-
ploits by preferring to set weights to 0 when possible.
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To support our theoretical findings empirically, we conducted a range of experiments,
showing that the DR of both randomly sampled QUBo instances and those arising from
real-world problems can be reduced significantly. This effect is particularly pronounced
when weight matrices are sparse. Most remarkably, we have seen that the prevalence of
the globally minimizing vector in the resulting sample set of a D-Wave QA device was
increased by orders of magnitude after applying DR reduction.

There are still numerous intriguing open questions and research directions waiting to be
explored. The theoretical notion of optimum inclusion can be extended to an equiva-
lence relation of QuBoO instances with the same set of minimizing solutions, which in turn
induces a partitioning on Q,,. The number of equivalence classes is necessarily finite,
bounded from above by the possible number of non-empty subsets of Q,,, 22" — 1, which
implies there is only a finite number of meaningfully different Quso instances of a fixed
size in terms of their set of minimizing bit vectors. This further implies that, for each
equivalence class, there is a representative of lowest DR. Finding these representative
instances, or devising an algorithm to do so for arbitrary n, is intriguing.

The optimum energy gap we used for defining our bound «o* in Theorem 6.1 stems from
the notion of spectral gaps in physics. This quantity is known to be an important factor
for the efficiency of QA, leading to potentially exponential annealing times under certain
conditions [71]. It is currently unknown whether there is a direct connection between
optimum energy gap and DR, although our theoretical findings seem to suggest so, as a
large gaps allows for stronger rounding. Besides the spectral gap, other factors influence
the solution quality of QA, such as the annealing time, which we fixed to 20us for our
evaluation. An optimization toward the native connectivity structure of the particular
QA device is conceivable as well. Establishing a more thorough connection between such
variables, DR, and the solution quality of QA is left for future work.

Lastly, we observed that DR reduction benefits from sparsity of weight matrices, and
that compressing large and simultaneously dense matrices is challenging for the iterative
methods presented here. Tighter bounds may improve the performance, but they get
increasingly costly to compute. A more specialized implementation using custom data
structures could surely reduce the computational complexity, increasing the maximally
feasible n. An even better approach would be to compute the update matrix A directly,
eliminating the iterative approach entirely. Developing such an approach is left for future
work, as well.

Until then, this chapter has presented a near-term method to make optimization on quan-
tum devices more feasible and reliable by increasing the probability to find the global op-
timum in practice, and it has established DR as an important quantity in the context of
quantum optimization.
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7. Optimal Light-Source Placement

In Part II we have seen how QC can enhance classical ML algorithms, and in Part III
we have reversed the direction and used classical algorithms and heuristics to improve
the performance of NISQ-era QC. We have demonstrated that QA is a powerful opti-
mization tool that can yield competitive results in the FS domain, even using today’s
imperfect quantum hardware. Further we have seen that quantum computers can repli-
cate SVMs, which constitutes a step in the direction of quantum-readiness of theoretically
well-founded ML models. On future quantum computers, these methods can be used out
of the box for new (and probably bigger and more complex) data sets.

However in the real world, out-of-the-box solutions that work well and require no manual
adaptation are rare to come by, which is particularly true for QC in the NISQ era. So far,
there is no quantum programming language that we can use to code an algorithm, and
which automatically exploits the benefits of quantum parallelism. Therefore, for the time
being, we are bound to tinker at the bare circuit level, or devise QuBo formulations for use
on quantum annealers on a case-by-case basis. In this part of the thesis we take a look at
three real-world problems with optimization problems at their heart, which we approach
with the toolset that contemporary quantum computing offers, highlighting interesting
and novel techniques along the way.

This chapter is based on publication [4]. The author of this thesis developed the idea
of the TorRcHPLACEMENT problem, formalized it, devised the basic QuBo formulation,
established the connection to SETCOVER, and wrote the majority of the paper. He also
implemented the random generation and graphical representation of height maps.
The experiments were designed and conducted jointly.

\. J

Video games are made for leisure, but at their core often contain hard optimization prob-
lems, such as maze solving or logical puzzles. Some games have even been shown to be
NP-complete, such as Minesweeper [163], or PSPACE-complete, such as Sokoban [164].
A somewhat more surprising game in this context is Minecraft, developed and first pub-
lished by the Swedish company Mojang around 2010%. It is an open-world game where
players explore randomly generated worlds consisting of cubic blocks, giving the game
its unique appearance (see Fig. 7.1). Blocks can be mined, collected and replaced, allowing
players to build houses and machines out of hundreds of materials. Minecraft has been

Zhttps://waw.minecraft.net/ (last accessed June 3, 2025)
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(a) Players approaching a village. (b) Dimly lit cave with hostile creature.

Figure 7.1.: Screenshots of Minecraft gameplay. Source: [4].

(@) 20 x 15 (b) 20 x 15

(d) same as above, with torches (e) same as above, with torches (f) same as above, with torches

Figure 7.2.: Randomly generated heightmaps used as input data for experiments. In the top row,
lighter color indicates higher elevation. In the bottom row, lighter color indicates
light level. Torch symboles represent torches placed on the respective blocks. White
tiles are walls. Source: [4].

one of the most successful games of the past decade and has been praised for fostering
creativity in both children and adults, even in an educational context [165].

A key component of Minecraft is the exploration of dark caves. If the light level on the
floor is below a certain threshold, hostile monsters spawn and attack the player. For
this reason, the player places light sources like torches on the floor, which light up a
surrounding area to prevent monsters from appearing. However, torches require wood
and coal to make, which is why they should be used sparingly to save resources. These
two competing objectives give rise to an optimization problem: How can torches be placed
in a given cave environment so that all blocks are lit up sufficiently, and as few torches
as possible are used?
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7.1. The ToRCHPLACEMENT Problem

Clearly, despite we are approaching this problem from a video game perspective, it gen-
eralizes to similar real-world setups where we want to cover a pre-defined area using as
few resources as possible: Examples could be sensors, cameras, or indeed light sources
with a fixed finite set of possible locations, each having a certain range across all possible
locations. In every situation where (i) there is a fixed set of discrete locations, (ii) we
can define a distance measure between these locations, (iii) a minimum distance to the
nearest resource is required, and (iv) the number of resources should be minimized, the
method described in this chapter is applicable.

Given the discrete structure of the game world of Minecraft, the first key insight is that we
can use binary variables z; € B to indicate the placement of a torch at location s. As we
have already seen in Chapter 3, problems of this kind can be approached naturally with
QA. In this chapter, we derive a QuBo formulation for the TORCHPLACEMENT problem de-
scribed above. To handle the large number of constraints, it requires Lagrangian weights,
which are learned in an iterative procedure on a quantum computer, similar to [166]. In
a range of experiments, we use both generated and actual game data from a Minecraft
world to demonstrate the effectiveness of this method.

This chapter is structured as follows: Section 7.1 defines TORCHPLACEMENT problem for-
mally. In Section 7.2, a QuBo formulation that attempts to solve it, combining quantum-
enhanced optimization with an iterative learning scheme. In Section 7.3, we use our
method to solve a range of example instances of TORCHPLACEMENT and discuss our ob-
servations. Finally, in Section 7.4 we summarize our findings.

The TORCHPLACEMENT Problem

To define the TorcHPLACEMENT formally, a mathematical description of the floor of a
Minecraft cave is required. To this end, we view a case as a 3-dimensional room from a
top-down perspective, consisting of cubic blocks that can be either empty or non-empty,
resulting in a tile map where each floor tile has a certain height (see Fig. 7.2). Walls are
assumed to have infinite height, and are impenetrable by light. Let S C Z3 be the set of
coordinates of floor tiles, i.e., (7, j, k) € S means that at position (i, j) there is a floor tile
at height k. More precisely, the elements of S are the coordinates of the empty blocks
above the floor on which we could place a torch. Walls are not included in this set. Let
us additionally define S = U jkyes Up=r{(i, 5, k')} as the whole set of empty blocks.
We use the simplifying assumption that the ceiling has infinite height.

Next we need to formalize the mechanics of light spreading in Minecraft, which is based
on the distance between a light source and the block in question. Each empty block
in Minecraft has a discrete light level between 0 and 15. A torch has a light level of
Lioreh = 14. The distance between two blocks is given by the discrete L' metric, i.e., the
number of blocks one has to traverse in each coordinate direction,

di((i1, 71, k1), (i2, j2, k2)) = [i1 — d2| + |71 — jo| + |k1 — Kal.
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When surrounded by empty space, light spreads according to this distance, diminishing
by 1 level per block. That is, a block at a distance of m blocks from a light source has light
level Liore, — d (but at least 0).

However, light cannot pass through blocks. Therefore, the true light level of a block is
the minimal distance between the light source moving only through empty space. We
can formalize this notion recursively by defining

d(s,1) 0 ifs=t, (7.1)
s,t) = :
1+ mingcpr(s) d(s’,t)  otherwise,

where N (s) is the set of coordinates of empty blocks around s, i.e.,
N(s)={s'eS: di(s',s) =1} (7.2)

If there is no path of empty space between the two blocks, we set d(s,t) = co.

Given a heightmap as defined by a set S, our objective is to place torches on some of those
tiles in such a way that all tiles have a minimal light level of L, using as few torches
as possible. We denote the set of torches as 7 C S with the interpretation that if s € T,
then there is a torch on s. Blocks containing a torch have a light level of L. If a tile
is illuminated by multiple nearby torches, it assumes the maximum over all light levels.
This lets us define the light level of any empty block as

l(s | T’ Ltorch) = max{O, rtré%;‘( Ltorch - d(S, t)}

If T = 0, then all blocks have the default light level of 0. It should be noted that this
way of light spreading does not at all align with physical reality, but is a game mechanic.
Where in reality we would expect light to move in straight lines from the source and be
blocked or reflected by obstacles, light in Minecraft has no sense of direction, but spreads
evenly to all neighboring blocks and can even move around corners this way.

The overall optimization problem we are trying to solve can now be formalized as

min |7 | (7.3)
TCS
s.t. l(S ‘ T, Ltorch) > Lmin Vs € S. (7.4)

For the remainder of this chapter, we set Lioch = 14 and Lyi, = 8, which are the same
values as in Minecraft.

A Quso formulation of TORCHPLACEMENT

TorcHPLACEMENT lends itself to QUBO, as its candidate solution space 3(S) is isomorphic
to the set of binary vectors B™ (cf. Def. 2.3). Firstly, we need to assign an arbitrary but
fixed order S to the elements of S, such that S; denotes the location of the i-th tile for
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alli € {1,...,n} withn = |S|. A subset 7 C S then corresponds to a binary vector
zeB"viaT = (1{S; € TH]_( ny This way, Eq. (7.3) is simply the problem of

ief1,.
minimizing the norm || z||,. It is easy to see that if we set Q;; = P Vi € {1,...,n} with
some arbitrary positive penalty value P > 0, then fg(2) = P||z||;, which is minimized
by 0.

The constraints defined by Eq. (7.4) are much more challenging to embed into the Quso
instance. Given a candidate solution 2z, we need to ensure that the light level is at least
Lnin at every location in S. To ensure this, the torch’s distance can be at most Ly —

Lmins

) min d(SZ, S]) < Lioreh — Limin V2 € {1, ceey n} (7.5)
]6{17"'>n}’
Zj =1
QuBo can natively only encode quadratic functions, but max is a non-linear operation,
which makes these types of constraints a challenge.

Avoiding Non-Linearity In theory, there are several smooth approximations of the
min and max functions which we could use here. However, we can simplify the con-
straints considerably by realizing that they constitute, in essence, a binary condition on
every block, namely whether it is lit up sufficiently or not. To encode this, we define the
binary matrix D € B"*" with entries D;; given by

Dij = ]l{d<S7nSj) < Lioreh — Lmin} Vi, j € {1, e ,n}.

To ensure that min; d(S;, S;) < Liorch — Lmin, we can check whether

ijDij = (DZ)Z >1 s (7.6)
J

which immediately yields linear constraints and circumvents non-linear constraints en-
tirely.

The new formulation of the optimization problem in Egs. (7.3) and (7.4) enhanced with
Eq. (7.6) reads

min1Tz (7.7)
z€B”
st. Dz>1,, (7.8)

where > denotes element-wise >, yielding n separate inequality constraints.

Similarity with SETCover By realizing that every block s € S defines itself a subset
of S containing all blocks that would be lit up sufficiently by a torch on s, we find that
ToRCHPLACEMENT has striking similarity to the NP-hard SETCOVER problem (see, e.g.,
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[167]): In SETCOVER, we are given a set A and a collection of subsets B; with B; C A for
each i € I, and |J;c; B; = A. The objective is to find a J C I such that |J| is minimal
and |J ies Bj = A. Given a heightmap with tiles S and distance function d as defined in
Eq.(7.1),weset A=S,I ={1,...,n}and B; ={s € S: d(S;,s) < Liorch — Lmin} for
alli € {1,...,n}. Thus, a solution J C I with minimal |J| is a minimal set of torches
that illuminates all other tiles.

Handling Inequality Constraints

It remains to show how to obtain a valid QuUBo instance from the constrained problem
given in Egs. (7.7) and (7.8). The linear inequality constraint in Eq. (7.8) can be refor-
mulated using an auxiliary vector m & Njj with non-negative integer entries through
Dz>1 & Dz — 1 = m, leading to an equivalent problem formulation,

min 1Tzst. Dz—1-m =0, m € Nj. (7.9)
ze{0,1}n
We can approach such a problem containing equality constraints by introducing a matrix
of binary slack variables S € B"*"™, where m = [log, n| [168]. If we define a vector
r = (20,21 ...,2m~1)T then we find that m = S7. The constrained problem in Eq. (7.9)
can then be turned into an equivalent unconstrained problem by introducing a penalty
value 8 > 0 and solving

min 17z + 8| Dz —1— Sr|”. (7.10)

z€{0,1}™, 8€{0,1}»xm
This formulation has the disadvantage of introducing nm additional binary variables,
increasing the QuBo dimension to n(m + 1), which quickly exceeds the capabilities of
today’s QA devices. We therefore use a different QuBo formulation that uses fewer qubits

by using the iterative method Alternating Direction Method of Multipliers (ADMM) [169].
Firstly, we establish a new problem formulation

min 17z +~176(m)

z€EB™, meZn
st c(z,m) =0, (7.11)
with v > 0, ¢(z,m) = Dz — 1 — m, and O being an element-wise step function

defined as ©(m) = (1{my < 0},...,1{m, < 0}). Here, 17O(m) is a penalty term
punishing negative entries of m, since we want to ensure m € N{j. Now, vectors z € B"
and m € Z" satisfying Eq. (7.11) are also optimal for the problem in Eq. (7.9). Next we
introduce the augmented Lagrangian [170, 171]

L(z,m,A\ pu)=1T24+~4170(m) + ATc(z,m) + g le(z,m)|?, (7.12)
where X and p are coefficients and multipliers for the penalty terms. To minimize this

expression, we use ADMM as outlined in Algorithm 7.1, which updates the vectors z and
m iteratively. Expanding line 5 yields
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Algorithm 7.1 Alternating Direction Method of Multipliers (ADMM). Source: [4].

Input: Initial g > 0,
Output: z*, m*, A*, u* optimizing L (z, m, A, 1)
:m* <« 0
A"+ 0
W= o
repeat
z* < argmin, L (z, m*, X*, u*) {QA applicable}
m* < argmin,,, L (z*, m, X*, u*¥)
A= X+ pfe(z,m)
Update p*
until a convergence criterium is met

W 2 N xdokw o

argmin L (z,m, A, 1) = argmin 17z + ATe(z,m) + K le(z,m)|?
zeBn ze{0,1}n 2

= argmin 172+ ATDz + K (2TD"Dz — (1 +m)" Dz),
ze{0,1}n 2

corresponding to a QuBo formulation solvable using QA. Finally, line 6 can be reduced
to
argmin L (z,m, A\, ) = argmin y17O(m) + ATe (z,m) + n le(z,m)]|?
mezn mezn 2

112
= argmin 7170(m) + r HDZ —1-m+—-A

mezn 2 w
=max{0, Dz — 1},

where max is taken element-wise in the last line. As an update rule for . in line 8 we
choose

ppe if fle(ze, )| > 10p [|D (my — mypa )|
pe1 = pe/p i ||D (my — mypa)|| > 10p [[e (2, my)||,
Lo otherwise,

using a fixed learning rate p > 1, following [169]. The subscript ¢ denotes the state of z*,
m*, A\* and p* after iteration ¢ of ADMM. In place of a convergence criterium in line 9
we use a fixed budget of N of calls to the quantum computer.

To summarize, in order to solve Egs. (7.7) and (7.8) we now solve a sequence of QuBo
problems, updating the parameters m, A and 1 according to Algorithm 7.1. As we use
QA for solving the QuBo instances, the resulting algorithm can be described as a hybrid
quantum-classical approach.
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Figure 7.3.: Screenshots of Minecraft caves. In Section 7.3, heightmaps based on these caves are
used for the experimental evaluation. Source: [4].

Experimental Evaluation

We evaluate the ADMM-based light placement procedure on a range heightmaps. Most
were generated randomly using 2-dimensional Perlin noise [172], ranging in size between
149 and 768 floor tiles, at an average of about 430 tiles. Others were extracted from cave
sections found in an actual Minecraft world. For these experiments, in order to obtain
a more comprehensive overview of the performance of different Quso solvers, we com-
pare four different solvers provided by the D-Wave Ocean®® Python package: Simulated
Annealing (SA), Tabu search (Tabu), a combination of those two (TabuSA), and a real
QA, namely a D-Wave Advantage System 5.4 with 5614 qubits and a total of 40, 050 cou-
plers. The combination of SA and Tabu is achieved by using the D-Wave Hybrid** Python
package, which provides a parallelized implementation. We use the default parameters
provided by D-Wave for all solvers. As a pre-processing step, we apply weight compres-
sion using the method presented in Chapter 6, which leads to improved solution qual-
ity for QA. We repeat ADMM 10 times for every combination of solver and heightmap,
plotting mean performance and 95%-confidence intervals. The hyperparameter settings
o = 0.01 and p = 1.1 were found to yield the best results.

Real Minecraft Caves Figure 7.3 (right) shows an in-game view of a real Minecraft
cave section, which we extracted a heightmap with n = 67 floor blocks from. Figure 7.4
shows the performance of all QuBo solvers for this cave: We plot the number of torches
as well as the number of violated constraints over the iterations of ADMM. Evidently, all
Quso solvers quickly converge to solutions violating no constraints. QA places the most
torches, indicating that its solution quality falls behind the other methods, which is a com-
mon problem of NISQ devices discussed thoroughly in previous chapters. Nonetheless,
Fig. 7.5 shows the result of a particular run using QA after 2, 5 and 10 iterations of ADMM.
After 10 iterations, an optimal solution is found, such that every block is lit.

Bhttps://docs.ocean.dwavesys.com/en/stable (last accessed June 3, 2025)
https://docs.ocean.dwavesys.com/projects/hybrid/en/stable (last accessed June 3, 2025)
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Figure 7.4.: Performance of the four Quo solvers QA, SA, Tabu and TabuSA on the real Minecraft
cave depicted in Fig. 7.3 (bottom). Source: [4].

(a) Heightmap (b) 2 iterations, (20) (c) 5 iterations (3) (d) 10 iterations (0)

Figure 7.5.: Real Minecraft cave (Fig. 7.3, right) with n = 67; white crosses signify light level
below Ly, Number of constraint violations in parentheses. The QuBo instances
were solved using QA. Source: [4].

For problems with large n, we use TabuSA from this point onward, since the results ob-
tained with QA were not satisfactory. In Fig. 7.6 we see solutions after a certain number
of ADMM iterations on the heightmaps of the other real Minecraft cave shown in Fig. 7.3
(left), which has n = 195 floor block. Again, we observe that with more iterations lead to
more and more torches being place until the constraints are fulfilled. In Figs. 7.7 to 7.10 we
depict ADMM solutions for random heightmaps of varying sizes, again using the TabuSA
solver. Each plot shows the original height map, two intermediate results during the La-
grangian learning phase, and the final result after the iteration budget is depleted. The
resulting torch placements are all valid, violating no constraints, and the torches seem to
be placed as sparsely as possible.

We find that some solutions contain two torches being placed right next to each other.
While this seems inefficient, the objective of our optimization problem does not explicitly
punish torches being place close to each other. On the contrary, certain heightmap layouts
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L
(a) Heightmap (b) 2 iterations (23) (c) 5 iterations (14) (d) After 20 iterations (0)

Figure 7.6.: Real Minecraft cave (Fig. 7.3, left) with n = 195; white crosses signify light level
below Lyi,. Number of constraint violations in parentheses. The QuBo instances
were solved with TabuSA. Source: [4].

(a) Heightmap (b) 2 iterations (128) (c) 10 iterations (3) (d) 20 iterations (0)

Figure 7.7.: Generated Minecraft cave with n = 168; white crosses signify light level below Ly;n.
Number of constraint violations in parentheses. Source: [4].

do in fact allow or even require adjacent torches, e.g., when they are at vastly different
height levels. Also, when the light of a torch does not quite reach into a corner and
another torch must be placed, its exact placement is arbitrary.

Concluding Remarks

In this chapter we discussed the TORCHPLACEMENT problem arising from the video game
Minecraft, how it is related to SETCOVER, and how it can be solved using a QuBo formu-
lation enhanced with an iterative procedure based on ADMM. While other methods for
solving SETCOVER using QUBO require a large number of auxiliary variables [173], the
approach shown here uses Lagrangian multipliers that are updated iteratively, shifting
the complexity from additional variables to an additional outer optimization loop, saving
valuable quantum resources when using QA as a solver. The results demonstrate that the
method yields satisfactory results for heightmaps with up to 700 floor blocks. However,
NISQ limitations restricted the experiments on an actual quantum annealer to heightmaps
of only up to n < 100 blocks.
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<] BR[|

(a) Heightmap (b) 2 iterations (122) (c) 10 iterations (8) (d) 20 iterations (0)

Figure 7.8.: Generated Minecraft cave with n = 169; white crosses signify light level below L ;.
Number of constraint violations in parentheses. Source: [4].

(a) Heightmap (b) 2 iterations (243) (c) 10 iterations (16) (d) 30 iterations (0)

Figure 7.9.: Generated Minecraft cave with n = 711; white crosses signify light level below Ly;n.
Number of constraint violations in parentheses. Source: [4].

Games and their computational complexity have inspired research for decades [163, 174,
175], and Minecraft is no exception. The connection between TORCHPLACEMENT and SET-
CovVER is not obvious, and developing new solution strategies for one problem might light
to new insights in other areas. For instance, we find that TORCHPLACEMENT and SET-
CoVER are similar to other problems such as MAXIMUMCOVERAGE, where an upper limit
k is given, and (staying in the context of TORCHPLACEMENT) we are looking to light up
the largest possible area using at most & torches.

The method described in this chapter may well be the first instance of QC being applied
to a problem arising from Minecraft. QC solutions to problems appearing in video games
have real potential to guide the application of quantum optimization to real-word prob-
lems, as they illustrative how to approach problems from a QC perspective. In addition,

(a) Heightmap (b) 2 iterations (243) (c) 10 iterations (16) (d) 30 iterations (0)

Figure 7.10.: Generated Minecraft cave with n = 708; white crosses signify light level below
Lyyin. Number of constraint violations in parentheses. Source: [4].
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combining optimization, QC, and video games may help to make scientific topics more
intuitive and approachable for young scientists.

136



8. Solving Sudoku using Quantum
Annealing

In the previous chapter we have seen an application of QA as a component within a bigger
optimization framework, where multiple QuBO instances had to be solved to obtain a
solution. In many cases, however, it is possible to embed an optimization problem as a
whole and obtain a globally optimal solution in a single run. As we will see in this chapter,
this is even possible if the search space is highly constrained, despite the fact that Quso is,
as its name implies, unconstrained by default. In Section 2.2 we described how constraints
can be incorporated by introducing penalty weights that drastically increase the energy
of forbidden solutions, rendering them non-optimal. We already applied this technique
in Section 4.1, where we added a penalty X for ensuring that ), a;; = 0. In Chapter 7,
we took the concept to the extreme by using an entire vector A of Lagrange multipliers,
which we learned through ADMM in an outer optimization loop. Disadvantages of highly
constrained QUBO instances are (i) an increased DR due to the large magnitude of penalty
weights, and (ii) a much spikier energy landscape due to valid solutions being hidden in
valleys surrounded by penalized solutions. We addressed the first point in Chapter 6
with our DR reduction methods, and we address the second point in this chapter through
another real-world application, the puzzle game Sudoku.

This chapter is based on the publication [3] by the author of this thesis.

The Japanese puzzle game Sudoku consists of a 9 x 9 square grid of cells, each of which
can hold a number from 1 to 9. Some cells contain clues, but most are initially empty. The
objective of this game is to fill in the missing numbers in a specific way, governed by a
set of rules:

Definition 8.1 (Sudoku). Given a9 x 9 grid of cells, a valid Sudoku fulfills that
1. each row contains all numbers exactly once,
2. each column contains all numbers exactly once,

3. each 3 x 3 sub-grid (block) contains all numbers exactly once.

The generalized version of Sudoku with grids of size N? x N2 has been proven to be NP-
complete [176]. In this chapter we will develop a QuBo embedding for Sudoku.
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DO

4 6 5

Figure 8.1.: Hard Sudoku puzzle from the New York Times on January 8, 2024, containing 24
clues. Source: [3].

The original idea of embedding Sudoku in QuBO was inspired by [177], where Hopfield
Networks are used to solve the generalized variant of this game. In that work, constraints
are employed to ensure that all conditions of Def. 8.1 are fulfilled, and the initial clues are
used correctly. This approach yields a valid, yet highly constrained QuBo instance, mean-
ing that bit vectors violating the constraints outnumber those that fulfill the constraints
by a large margin. Considering a one-hot encoding of all numbers on the Sudoku grid
(ignoring all further constraints for the moment) leads to 93 = 729 bits (9 bits per cell,
9 x 9 cells) representing 108! possible assignments (including the empty cell) versus 272°
possible bit vectors. This means that the proportion of valid one-hot encodings of Sudoku
is 1081/2729 ~ 107138'

The approach in this chapter deviates from [177] in two ways: Instead of additional con-
straints for the initial clues, the corresponding variables are fixed and removed them from
the optimization altogether, reducing the problem size considerably. Moreover, no con-
straints are used to force all cells to be non-empty, but non-empty cells are encouraged
through rewards, relying on the QUBo solver to discover the correct solutions of lowest
energy. While [177] presents a general solution for any NV, this chapter focuseson N = 3
as the default Sudoku. However, generalizing the techniques presented here can be easily
achieved using the same techniques.

The QuBo formulation described below closely aligns with [178], where a Sudoku is
mapped to a graph and interpreted as an instance of the INDEPENDENT SET problem.
While in [178], pre-processing steps are performed on the Sudoku puzzle itself to sim-
plify the resulting QuBo instance, the following approach incorporates clues and simpli-
fication on the QuUBoO level using techniques discussed in previous chapters as well as new
ones.
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The Sudoku QuBo

We start by defining the one-hot-based QuBo formulation of Sudoku mentioned above
with its extremely small proportion of valid bit vectors. This problem is going to be
mitigated later on.

Firstly, we introduce binary indicator variables s;;;, € B for all 4, j,k € {1,...,9} with
the interpretation that s;;, = 1 means “the cell in row 4, column j contains number £”,
resulting in a total of 729 variables describing a Sudoku grid that can hold every possible
combination of numbers. The constraints of Def. 8.1 are encoded into a QuBo weight
matrix S € Qry9 through a positive penalty weight A > 0. Given two cells repre-
sented by (4, j, k) and (¢/, j', k), a penalty is added if any of the following four conditions
hold:

Wi=d Nj#7 Nk=FK
(same number twice in the same row)
@) i#£id Nj=j5 Nk=F
(same number twice in the same column)
(i) [i/3] = ['/3] A [3/3] =15'/3] N k=F
(same number twice in the same block)
v)i=d7 Nj=7 NEkE#FK
(multiple numbers in the same cell)
If we were to use penalties only, empty cells would be assigned the same energy as filled
cells containing numbers that fulfill the constraints. To solve this problem, we reward
solutions with a high number of 1-bits by giving each s;j;, a linear weight of —1. To
represent all s;;, as one continuous bit vector, we need an arbitrary but fixed bijection
vi{1,...,9 — {1,...,729}, such as
(i, j,k) =81i+ 95 + k — 90. (8.1)
This way, we can use continuous binary vectors z € B to represent the binary variables

through 2z, = s;;, if 1(4,j,k) = wforallw € {1,...,729}. The entries of the resulting
QuBo matrix S can be summarized as

A ifu # v and any of (i)-(iv) are

true, where u = (4,7, k) and
Suww = v = L(i/uj/? k/)r (8:2)
-1 ifu=w,
0  otherwise.

If we use the specific bijection ¢ given in Eq. (8.1), the matrix S (in its symmetrical form)
can be expressed quite beautifully as

S =1 - 10)* + K** @ Iy — I§*
with K = I3 ® (1 — Ig),
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Figure 8.2.: Sudoku QuBo weight matrix § in its symmetrical form, as defined in Eq. (8.2).
Source: [3].

where @ denotes the Kronecker sum definedas A ® B = A ® I, + I, ® B for square
matrices A € K% and B € K"*® over any field K (not to be confused with the direct
sum used in Def. 4.4), and ® is the usual Kronecker product.

The value of the penalty weight A has to be chosen such that it cancels out the reward
of two incorrectly placed numbers. As each single number placement yields a reward of
—1, this implies A > 2. For the remainder of this chapter, we simply set A = 3. The full
matrix S is shown in Fig. 8.2.

Incorporating Clues
A Sudoku puzzle comes with a number of clues, i.e., pre-filled cells, and a human players

deduces the missing numbers logically. Let C' C {1,...,9} denote a set of tuples (4, j, k)
which are given as clues. Instead of resorting to additional clues to force the grid cells to
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aling with C, we can fix the values of the corresponding variables at indices ¢(i, j, k) for
every (i,j,k) € C and exclude them from the optimization procedure altogether. With
every variable that is removed (i.e., with every clue), the search space size is reduced by
half.

Saving Quantum Resources through Clamping

Any Quso instance @ of size n can be transformed into a smaller instance Q' by assigning
fixed values to one or more variables, which is sometimes referred to as clamping [102].
Let Iy, I; C {1,...,n} with Iy N I; = (). We want to implicitly assign z; = 0 Vi € I
and z; = 1Vj € I, which allows us to eliminate these variables, such that Q" has only
size m = n — |Ip| — |I1|. First, we define an injection x mapping the remaining variable
indices {1,...,n}\Ip\/[1 to {1,...,m}. Now, for any vector 2’ € B™, the original energy
value can be computed by re-inserting the implicit bits into 2’ and evaluating with the
original Q. For simplicity, assume that 2’ is padded with a constant 1 at the end, obtaining
2" = (z),...,x!,,1) € B! This allows us to construct a matrix T' € B"*(m+1) that
re-inserts the implicit bits, whose rows read

(0,0,...,0,0) ifi € I,

T,.=<¢(0,0,...,0,1) ifiel, (8.3)
eL(i) otherwise.

This lets us restore the original energy value as

fo(z)=(TZ")Q(TZ")=2"TT"QT 2". (8.4)
2T z Q"

As a final step, we can exploit the fact that TTQT = Q" € OQm + 1 is only applied
to vectors with a constant 1 at the end, i.e., w',’n +1 = Lin order to reduce its size by 1:
We set Q' = Q' ., + diag[Qy, 1 .,,,| + diag[Q7, 1] € R™™, using 2241 =
zi Vi € {1,...,m}. The notation : m as an index denotes all rows or columns up to
and including index m, as illustrated in Fig. 8.3. The remaining value Q7,1 ,,,,1 = cis

needed to recover the original energy value

fo(z) = fo(Z)+c=2"Q'Z +¢, (8.5)
but can be ignored during optimization.

With the set of clues C' at hand, the relevant variables of S can now be clamped the
following way: For all (¢, j, k) € C,

(D) clamp z,(; j 1) = 1
(cell (4, 7) contains the correct value)

() V&' # k, clamp z,(; j 1y =0
(remove all other values for cell (7, 7))
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Q/

Figure 8.3.: Computation of Q' from Q”. Source: [3].

() Vi’ #4,5" # j, clamp 2,y j 1y = 0 and z,(; j7 ) = 0
(forbid the same value within the same row or column)

(IV) For all cells (i, j) in the same block as (i, j), clamp 2, ju 1y = O for all
(forbid the same value within the same block)

In principle, only operation () is strictly required, but operations (II) to (IV) reduce the size
of the QuBo instance further by exploiting domain knowledge. Using only the operations
(I) and (II), the QuUBO size is reduced by 9|C/|.

A Practical Example

As a benchmark puzzle, we use a hard Sudoku puzzle from the New York Times website®
shown in Fig. 8.1. 24 clues are given, from which we extract the corresponding set C' =

Bhttps://www.nytimes.com/puzzles/sudoku/hard (puzzle from 8 January 2024, last accessed June 3,
2025)
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Figure 8.4.: QuBO parameter matrix for the hard Sudoku puzzle of the day by the New York Times
on January 8, 2024. The image shows the symmetric matrix 0.5(Q" + Q'T) after
applying all clamping operations (I) to (IV); the resulting optimization problem has
211 variables. Source: [3].

{(1,8,2),(2,5,9),...,(9,7,5)}. By applying operations (I) and (II) we can reduce the
number of variables from 729 to 513, and further down to only 211 variables by applying
() and (IV). The QuBo matrix Q' is shown in Fig. 8.3. Two more variables could be
clamped by the QPRO+ preprocessing algorithm [92], which, similar to the techniques
shown in Chapter 6, uses bounds to determine variable assignments that are necessarily
optimal. This step is optional. The final QuBo instance with n = 209 variables was solved
using SA [179] and QA, as we have already seen in Chapter 7.

D-Wave implementations were used for both methods: SimulatedAnnealingSampler
from the dwave-neal package for SA, and DWaveSampler from dwave-system for QA.
Both are set to perform 1000 readouts, all other parameters were left on their default
settings to be set heuristically.
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As a correct solution to this QUBO problem contains exactly 81 numbers, each giving a
reward of —1, and no constraints are violated, we know by construction that the mini-
mal energy of S is —81, allowing us to easily verify if a given solution z is correct by
checking if fg(z) = 27Sz = —81. This property does not change through clamping,
as the operations (I) to (IV) never introduce constraint violations, assuming C' itself is
valid.

The results, as in the previous chapter, reflect the challenges of QA hardware: SA is able
to find the optimal solution quite reliably within 1000 readouts with an average energy
of —75.047 + 1.822 per solution. QA on the other hand was not able to find the cor-
rect solution, even after repeating the experiment 15 times with 1000 readouts each. The
average energy of each shot is around —53.795 & 4.321, which is quite far from the theo-
retical minimum of —81. Contributing factors are probably (i) the restricted topology of
D-Wave’s QA devices, leading to variable duplication, and increasing the overall problem
complexity as a consequence (cf. Section 2.4.3), as well as (ii) a lack of fine-grained man-
ual hyperparameter tuning (e.g., manually adjusting chain strength and qubit mapping),
which exceeded the scope of this evaluation.

Effect of Puzzle Difficulty

In a final experiment we want to investigate how a puzzle’s difficulty correlates with
the performance of solvers on the corresponding QuBo instances. To obtain a range of
Sudoku puzzles of varying difficulty, we use the data set “3 million Sudoku puzzles with
ratings” by David Radcliffe, available on Kaggle?. It contains 3 million Sudoku games
with varying number of clues. As a rule of thumb, the hardness of a Sudoku puzzle
negatively correlates with the number of clues it has. The data set contains puzzles with
the number of clues n. ranging from 19 to 31. For each value of n., we choose the first
puzzle in the data set with that number of clues, leaving us with 13 puzzles which we,
once again, solve with both SA and QA. This time, we perform 2000 readouts (which is
the maximum number of readouts the QA device allows) and record the energies of all
samples. The results are visualized as violin plots in Fig. 8.5, showing the mean, minimum,
and maximum over all energy values, along with their relative distributions.

Once again, SA outperforms QA, finding the correct solution for 7 out of 13 puzzles within
2000 samples, the hardest puzzle having 23 clues. As expected, puzzles with more clues
are generally easier to solve for both methods, as the number of variables decreases with
a higher number of clues. Below a certain number of clues, either method is able to find
the optimal solution within the number of readouts performed. For QA, this threshold
is above our initial upper limit of 31: A few more trials reveal that the lowest number
of clues for which QA is able to solve puzzles is around 36, and we were able to obtain
one correct solution for 35. At this point, the number of binary variables approaches 100,
which seems to be a threshold for the current quantum hardware.

Phttps://www.kaggle.com/datasets/radcliffe/3-million-sudoku-puzzles-with-ratings (last ac-
cessed June 3, 2025)
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Figure 8.5.: Sample energy distribution for 13 Sudoku puzzles of varying number of clues, using
Simulated Annealing and Quantum Annealing with 2000 readouts each. The violin
plots show minimum and maximum values as well as medians; lower energy is better.
The green line is the lowest possible energy of —81.

Sampling Sudoku Puzzles from Quantum States

The primary aim of the QuBo formulation is to solve Sudoku puzzles. However, it can
also be used to create new puzzles: As the un-clamped weight matrix S from Eq. (8.2) has
energy —81 for all valid solved Sudoku puzzles, all of them are equally likely under the
respective Gibbs distribution pg(z) = exp [~ fs(z) — A(S, B)], where 3 is the inverse
system temperature and A(S, 3) = log )", cpn exp [—3fs(z’)] the log partition func-
tion. This means that for limg_,ins, the probabilities for all 2’ € B™ with fg(2') > —81
approaches 0, leaving a uniform distribution over all solved Sudoku puzzles. On real quan-
tum devices, and on NISQ devices in particular, tiny fluctuations of the parameter values,
such as those caused by ICE, may bias the distribution, leading to a small subset or even
just a single solution dominating the sampler output (cf. [180]). Additionally, embedding
S with n = 729 onto the D-Wave annealer’s qubit topology is not possible.

While true sampling from a quantum Gibbs distribution is still not feasible, we can instead
use SA with a random initialization to simulate random sampling, circumventing these
problems for now. To this end we ran SA on S, performing 10, 000 readouts. 221 of the
samples had an energy value of —81, meaning they are valid Sudoku solutions, which we
further confirmed to be pairwise distinct from each other.
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Algorithm 8.1 Algorithm for sampling Sudoku puzzles

Input: Kn.eN,17<n. <81
Output: Valid Sudoku puzzle

1: loop

2. s < sample from S with fg(s) = —81
3.  C <« generate n, clues from s

4 S < clamp S with C

5: O=10

6: forallk=1,...,K do

7: s' < sample from S¢, with fg, (s') = —81
8: O+ 0U {8/}

9:  end for

10:  if |O| =1 then

11: return C

122 endif

13: end loop

Generating Unambiguous Puzzles

Generating solved Sudoku grids this way is relatively easy. However, generating good
Sudoku puzzles and their initial set of clues is more challenging: Simply choosing a
random subset of squares and deleting all remaining numbers leads to ambiguous puz-
zles, meaning that more than one solution is valid, which is generally undesirable. The
smallest number of clues necessary for an unambiguous Sudoku puzzle was proven to
be 17 [181]. With this knowledge, an algorithm to sample Sudoku puzzles is sketched in
Algorithm 8.1.

It is based on the idea that we can sample a solved Sudoku puzzle, generate a random
set of clues, and then repeatedly sample valid solutions from the clamped QuBo instance.
If after K tries only a single solution was found, we conclude that the clamped Quso
instance has a unique solution, and, consequently, the Sudoku puzzle defined by C' is un-
ambiguous. Obviously, this algorithm provides no theoretical guarantees: The larger we
choose K, the more confident we can be that C' has a unique solution, however, ambigu-
ous puzzles can still occur by chance. In addition, if we choose n. close to 17, this pro-
cedure becomes increasingly unreliable, as the search space gets larger due to the higher
number of variables in S¢-, while the number of unambiguous puzzles gets smaller.

Concluding Remarks

This chapter presented a strategy to encode Sudoku puzzles as QUBO instances and solve
them using QA. For any given puzzle, the initial clues can be incorporated into the Quso
weight matrix by clamping, an alternative method of enforcing constraints without re-
sorting to extensive use of penalty weights. By using this method, the number of binary
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variables dictating the search space size is reduced considerably, and the ratio of valid to
invalid bit strings is increased. The property that the resulting QuBo problems are smaller
for larger clue sets C' aligns nicely with the intuition that Sudokus are simpler the more
clues are given. We saw that this method solves Sudoku successfully, both using a clas-
sical SA solver and a quantum annealer. While SA could solve all presented test puzzles,
QA works only for rather easy puzzles with around 36 clues at this point in time, mainly
due to NISQ constraints.

Lastly, we showed that QA and (to a certain extent) SA can be used for sampling solved
Sudoku grids, and devised an algorithm for generating new Sudoku puzzles. It produces
puzzles with a unique solution with a certain probability that can be controlled by a hy-
perparameter K.

In conclusion, this chapter serves as an example of a NISQ-friendly approach to solving
a problem with QC by trying to keep the problem size small and avoiding unnecessary
constraints, which may both increase the DR and lead to an energy landscape that is easier
to traverse for heuristic solvers and quantum devices alike.
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9. Predicting Process Stability in Machining

In Chapters 7 and 8 we have seen two applications of AQC for solving optimization prob-
lems. For this last application chapter, we once again turn to the paradigm of GQC to
approach an ML problem. While the previous problems arose in the context of games
and puzzles, the focus of this chapter is a problem of much more immediate relevance
for practical applications: Predicting the stability of milling processes in the context of
machining.

This chapter is based on publication [8]. The author of this thesis constructed and
pre-trained the custom feature map, extended the RQSVM model to perform regres-
sion, designed and conducted all experiments using the provided machining data,
created the plots, and wrote most of the paper.

Milling is a manufacturing process that is critical for a wide range of mechanical engineer-
ing applications. During this process, a rotary cutter removes material from a workpiece,
producing high-precision products and parts that are used in numerous industries, in-
cluding aerospace [182], the automotive industry [183], and in medical applications [184].
The stability of milling processes is a central factor, impacting the quality and efficiency of
production. While theoretical approaches exist for modeling stability, these methods are
computationally intensive due to the complex dynamics involved. To circumvent these
challenges, we use an ML approach to approximate stability predictions.

As the ML model of choice, we use the SVM, whose QC variations were discussed exten-
sively in Chapter 4. In this chapter, we adapt the RQSVM model presented in Section 4.2.
Asitis originally a classifier, we extend it to a regression model in Section 9.2 by swapping
the underlying SVM model and interpreting the measurements of the resulting quantum
state differently.

Real-world applications, particularly at industrial scale, often present big challenges to
both classical ML and contemporary QC in particular: They frequently deal with large
amounts of data, a large number of variables or features, and they produce noisy and
incomplete data. The RQSVM model uses only O(log,(d)) qubits for d-dimensional input
data, making efficient use of contemporary quantum resources and adapting well to the
problem domain at hand.

Using a quantum model for stability prediction in machining opens up the possibility of
future exploitations of quantum feature maps [185]. Such functions, mapping classical
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data into a Hilbert space, may be better suited than classical approaches for capturing the
underlying physical effects causing the stability behavior observed in practice.

Stability of Machining Processes

Milling is a fundamental machining process used to shape solid materials by removing
material from a workpiece through the rotational motion of a cutting tool. The process
typically involves a multi-toothed cutting tool called a milling cutter, which rotates at
high speeds and interacts with a stationary or moving workpiece to produce the desired
shape. Milling machines are highly versatile, capable of creating complex geometries,
making them essential in manufacturing.

It plays a critical role in numerous industries due to its ability to produce precise, high-
quality parts: In the aerospace industry, milling is used to manufacture lightweight and
complex components such as turbine blades and other important structural parts [182].
In the automative industry, many engine components are produced this way [183]. Simi-
larly, parts for wind turbines, gas turbines, and other energy systems often rely on milling
for precise manufacturing [186, 187]. It further enables the creation of surgical instru-
ments and implants, requiring both high precision and intricate detailing [184].

One of the major challenges in milling is ensuring process stability. A stable milling
process results in smooth, consistent cuts without undesired oscillations or vibrations.
When the process becomes unstable, it can result in a phenomenon known as chatter, a
self-excited vibration that can have negative effects, including (i) reduced surface qual-
ity, potentially rendering the part unsuitable for its intended application, (ii) increased
tool wear and breakage due to excessive forces generated by chatter, and (iii) decreased
efficiency, as unstable milling may require reduced cutting speeds and depths, lowering
productivity and increasing operational costs [188]. To predict and avoid instability, en-
gineers rely on stability lobe diagrams, indicating conditions under which the process is
stable. However, generating these diagrams through physical simulations is computa-
tionally intensive, as it requires modeling the interactions between the tool, workpiece,
and machine dynamics [189, 190].

ML offers an alternative, where these complex factors are modeled implicitly by train-
ing a model of the stability behavior from measurements [191, 192], which can even be
transferred between different machine tools [193]. In Section 9.2, we discuss a similar
strategy, but using an RQSVM model that can be deployed on a gate-based quantum com-
puter.

Data Set of Stability Limits

For later evaluation, we use a data set from [193], containing empirically determined sta-
bility limits @, jim of milling processes, the input features being spindle speed n and tool
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Fixed Clamp Movable Clamp
] Tool
Workpiece Feed Direction
- Qe max
Microphone

Figure 9.1.: Schematic top-down view of the data collection setup for the stability limit data set.
Adapted from [8].

wear w?’. The data collection setup is shown in Fig. 9.1: A workpiece was fixed with a
clamp, and a milling tool performed side milling, where the radial cutting depth a. was
linearly increased to a maximum value @¢ max. This process was repeated with spindle
speeds varied from 4000 to 8000 RPM with 50 RPM increment. All other parameters were
kept fixed. The wear state of the currently used tool was recorded as a value proportional
to the volume of material removed per unit length of the tool. During the milling pro-
cess, a microphone recorded sounds, from which the point at which the process became
unstable (i.e., the radial cutting depth a. i) is determined. If the process did not become
unstable, i.e., @ lim > Ge,max, We drop the corresponding data point.

To obtain a more varied data set, these tests were carried out on two different machining
centers, DMU 50 and DMU 50 eVolution, which we name DMU 4 and DMU g in the follow-
ing. Additionally, multiple milling tools were used throughout the experiments, yielding
multiple measurements per wear state w. More precisely, six tools were used, three each
for DMU4 and DMUp, labeled Tf(ll), f), TIE‘S), and T]_(;l), Tg), T](5,3), accordingly. The
measurements are collected separately for each DMU, resulting in two data sets D4 and
Dp, containing |D4| = 895 and |Dp| = 829 points. All data points are shown in the
top halfs of Figs. 9.3 and 9.4 for D 4 and Dp, respectively. For a more detailed description
of this data set, its collection setup, and the remaining process parameters, refer to [193,
8].

Applying Quantum Support Vector Regression

In this section, we apply predict the stability limit of milling processes using a quantum
model. To this end, we device a custom feature map to allow for more complex, non-linear
prediction functions. As our target variable a. jim is continuous, we use an extension of

*’Note that n is used this way in machining literature. We use it to denote the spindle speed only within
this chapter, as it may otherwise be confused with the number of variables, e.g., of a QuBo problem. This
conflicting usage is avoided throughout this chapter.
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Figure 9.2.: Exemplary function we. Source: [8].

the RQSVM model discussed in Section 4.2, resulting in an e-Real-part Quantum Support
Vector Regressor (RQSVR) model capable of performing regression.

Building a Feature Map

As we see in Figs. 9.3 and 9.4 (top), the stability data exhibits a wave-like pattern. To
capture this behavior, a custom feature map is devised to augment the collected data. To
this end, a wave function w,, is defined with

Wa(n,w) = cos (Oq + agn + asw + agn?® + asnw + a6w2) ,

where o € R® parametrizes the wave’s frequency by a 2" degree polynomial over n and
w. The function is shown in Fig. 9.2 for a fixed value of o

Using this wave component, a final feature map s is constructed as
Peos(n, w; ) = (n,w,n2,nw,wz,w,nw,ww,n2w,nww,w2w)T,
with w being short for wq (n, w). To obtain fitting values for a, a function
f(n,w; e, B, ¢) = BTeos(n, w; ) + ¢ (9.1)

was defined and used as a prediction function to perform a least-squares fit on D4 and
Dp separately by adapting the parameters o, 3 and c. First, each data column was nor-
malized to the unit interval, and the L-BFGS-B algorithm [194] was applied to minimize
the MSE between f(n,w; o, B,c¢) and ac jim, for which the Python package scipy was
used?®. As the optimization proved to be difficult, multiple L-BFGS-B runs with different

Bhttps://scipy.org (last accessed June 3, 2025)
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Table 9.1.: Parameters o found for D4 and Dp, and the resulting MSE. Source: [8].

Parameter Da Dp
a1 15.52749483 —2.87183284
oD —4.46971848  11.95336368
Qs —9.55499409 0.99781459
oy —14.22448621  28.58595761
as —2.38118747 2.27955561
Qg 14.75707122 —4.34204599
MSE 0.12337479 0.21384462

initializations was performed. To this end, a simple local search over the initial param-

eters was performed by sampling ago), egt) ~ N(0,10) iid. for all 7 and ¢, and setting
ot = ar(ﬁi)n + €®, where afﬁi)n yielded the lowest MSE across all iterations ¢’ < t.
This procedure is, in essence, a (1 4+ 1) EA used as a hyperparameter search (cf. Sec-
tion 2.2.2). The termination criterion was reached when no improvement was found after

1000 iterations.

The final values of o found for each data set are listed in Table 9.1, along with their
resulting MSE values. These values were used to generate two new data sets 4 and
Fp containing the features ¢cos(7, W; a*), where n and @ are the normalized original
features, and a* is the optimal value of @ found for the respective data set, D4 and
Dp.

Support Vector Regression

SVM models are, by default, binary classifiers, as their model function only outputs +1 or
—1 (see Eq. (2.11)). However, the e-Support Vector Regressor (SVR) [60, 113] is a variation
of the original SVM with a modified training procedure and model function, capable of
predicting real values.

Definition 9.1 (Primal e-SVR [113]). Given a labeled data set D = {(x?, Yi) Yieq1,..,.N}y C
R? x R and a feature map ¢ : R* — R/, the primal e-SVR is the optimization problem

Lo
min - ||lw C17¢ +C17¢
S, 5wl + C1TE+C17¢

stwTo(x') —b—1y > e+ &,

yi —wTo(x') +b> e+ &
&6 >0vie{l,...,N},

where e, C' > 0 are hyperparameters.

153



9.3.

9. Predicting Process Stability in Machining

In contrast to Def. 2.11, this optimization problem has two hyperparameters: The param-
eter ¢ defines a margin of values which are considered correct, i.e., if the prediction is
less than € away from the true value y, no penalty is added. If in fact the error is larger
than e, the slack values £ or £ are increased, depending on if the prediction overshoots
or undershoots the true value. Hyperparameter C' controls the penalization of wrong
predictions.

Just like the primal SVM, the e-SVR has a dual formulation, which can be derived and
solved by means of Lagrangian optimization (see [113] for details). The final prediction
function of the linear e-SVR is given by

Jwp(x) = wTp(x) —b.

As we see, it is nearly identical to Eq. (2.11), differing only in the missing sign function,
which yields a real-valued output.

The RQSVM can be extended seamlessly to perform e-SVR regression. To this end, we
simply swap out the parameter training procedure, using LIBSVM [113] to solve the prob-
lem given in Def. 9.1 and obtain the optimal weights w, which are then embedded into
the quantum circuit as described in Section 4.2. The measurements of the final quantum
state are evaluated identically, as well, only omitting the sign function at the end.

Evaluation on Stability Data

Combining the findings of the preceding sections, an e-RQSVR model is trained on the
enhanced data sets F4 and Fp. The error margin was fixed to ¢ = 0.1. To determine
hyperparameter C, a range of values at different orders of magnitude were tested (C €
{1073,1072,...,C?). For each, a 10-fold cross validation was performed. To this end,
the data points were shuffled, split into 10 subsets of roughly the same size, and the MSE
recorded for each subset after training an e-RQSVR on the remaining 9 subsets. The mean
of all 10 MSE yields the cross-validated MSE. It was found that C' = 1 leads to the best
performance, with a mean MSE of 0.15470591 for F4 and 0.25276193 on Fp.

Figures 9.3 and 9.4 (bottom) show the training data predictions, obtained by using F4 and
Fp as inputs to their respective e-RQSVR models. For each data point, 10° measurements
of the simulated quantum state were taken to compute the prediction. Figures 9.5 and 9.6
show the prediction function for different values of tool wear w fixed at regular intervals
between 0 and 256 cm?. Additionally, the uncertainty introduced by quantum measure-
ments is shown as an area around the plot, denoting one standard deviation.

All figures demonstrate that the feature map captures the wavy pattern of the stability
data. Particularly for Fp, the prediction is visually very similar to ground truth, exhibit-
ing the same characteristic wave-like pattern. For F 4, the cosine component of the fea-
ture map is used to a much lesser degree, leading to a much straighter prediction function,
as seen in Fig. 9.5. Due to the complexity of the highly non-linear optimization problem

154



9.3.1.

Radial depth of cut a,

9.3. Evaluation on Stability Data

Original

250

150

Wear w

100
mm —

20

Radial depth of cut a,

1.0 1 1 1 1 1 1 1 0
5000 5500 6000 6500 RPM

Spindle speed n

Figure 9.3.: Top: Data set D 4. Bottom: Prediction of RQSVR model trained on F4. Source: [8].

in Section 9.2.1, it is possible that a better solution exists, but was not found using the
iterative procedure. In Fig. 9.4, we see that the model predicts another rise of the stability
limit at around 7700 RPM, which is not present in the original data, though. This implies
that the feature map may not be expressive enough to model this particular part of the
training data. For lower values of n, however, the predictions generally align closely with
ground-truth.

Predicting Tools

The milling tools Tlgl), cee Tg)) are of the same make, and should—in theory—behave the
same under the same conditions. In reality, however, slight manufacturing imperfections
causes each individual tool to behave differently in detail. In a final experiment, this
variation among milling tools is investigated.

As mentioned in Section 9.1.1, each data set is comprised of measurements taken from
three tools labeled T.(l), T.(Q), and T.(3), for each of the two DMUs. In other words, we
can describe the data sets as D. = U?:1 T(l), where 7") contains all features recorded

using tool 7, Intuitively, the tools should behave the same if we can train a model on
two tools and accurately predict the behavior of the third tool. To test this theory, we
perform the following steps for every DMU M € {A, B} and tool i € {1,...,3}:

1. Split the data set into

3
i = [ D Diff' = Dj.
j:17
J#
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Figure 9.5.: Model prediction for D4 for varying fixed wear values, with uncertainty over mea-
surement noise (one standard deviation). Source: [8].
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Figure 9.6.: Model prediction for Dp for varying fixed wear values, with uncertainty over mea-
surement noise (one standard deviation). Source: [8].
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Figure 9.7.: MSE of RQSVR models trained on different tool subsets. The stability of the tool on
the x-axis is predicted after training the model on the remaining two tools. Left:
Tools from D 4. Right: Tools from Dg. Source: [8].

2. Construct a feature map ¢eos(-; ) from D", using the methodology described
in Section 9.2.1.

3. Use ¢heos(+; @) to compute FUA" and Fi.
4. Train an e-RQSVR with € = 0.1 and C' = 1 on F{#".
5. Predict Fi#™ and F using the trained model and record the MSE values.

The results of this experiment are shown in Fig. 9.7 as bar plots. If the tools were perfectly
identical, we would expect that all MSE values are approximately equal across all tools.
However, we find that the models’ performance is different for some tools. Notably, both
data sets seem to contain one tool in particular that is more difficult to predict from the
remaining tools: Both Tlgl) and Tg) yield the highest test MSE among all tools, being
roughly twice as high as for the remaining tools, while simultaneously having the lowest
training MSE, implying that the remaining tools’ behavior is more similar to each other.
The fact that the training MSE is higher for the remaining tools further reinforces this

theory, as the inclusion of features from the outlier tool seems to lower the overall pre-
diction quality rather than improve it. This is particularly noteworthy for T(l), where
the training error is higher than the test error, which is unexpected, as the performance
of any ML model is typically worse on unseen data (cf. [9, Sec. 7.4]). A possible explana-
tion of this atypical behavior is that Tg) is so difficult to predict that its inclusion in the

training MSE of Tg) makes it larger than the test error.

In summary, we find the initial hypothesis confirmed that the tools do not behave identi-
cally in practice, and some tools are harder to predict than others. It must be noted that
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this can be due to (i) different physical properties of the tools, or (ii) a different feature
map quality resulting from training on the other tools, though the second point correlates
with the first one.

Concluding Remarks

This chapter has discussed a third application of QC to a real-life problem, namely to
the prediction of stability limits in milling processes. To this end, a custom feature map
based on domain knowledge was constructed, and an e-RQSVR trained on the resulting
features, which is an extension of the RQSVM presented in Section 4.2. Experiments
showed that this model is able to predict the stability limits contained in the empirical
data set accurately, while introducing some noise caused by quantum measurements. In
another experiment, the similarity of the different tools used during data collection was
analyzed by trying to predict their stability behavior from all other tools. The results show
that the tools, despite being of the same make, behave differently and cannot be perfectly
predicted from each other. Possibly, a transfer learning approach similar to [193] could
be employed for this scenario, in order to fine-tune models between different tools.

Similar to other practical applications, the advantage of using QC for predicting milling
stability is, at this point, of theoretical nature. While the feature map in Section 9.2.1 relies
on domain knowledge and is limited in its expressivity, quantum computers beyond the
NISQ era may be capable of performing both feature extraction and regression, exploiting
the exponentially large Hilbert space of quantum states to encode features that may be
even better suited than classical features to predicting the stability limits of milling pro-
cesses [185], which are themselves a result of the complex interplay of physical properties,
after all.
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This thesis has delved deeply into the interplay of optimization, ML and QC in the NISQ
era. We posed the questions of how ML, driven by optimization at its core, can benefit
from QC methods, and conversely, how classical methods can improve the limited and
imperfect quantum resources we have available today.

Concerning the first question, we showed in Chapter 3 that FS, an important pre-processing
step in any ML pipeline, can be solved using a Quso formulation of the corresponding
optimization problem on quantum annealers. It was proven that any desired number
of features can be obtained simply by weighing feature importance against redundancy,
and we showed in a range of practical experiments that the method works well in prac-
tice and is competitive to alternative FS approaches. We then turned our attention to
SVMs in Chapter 4, which constitute a theoretically well-founded ML model, and showed
that QC can be applied twofold: QA can be used to train SVMs under the assumption of
discretized weights, which still perform well compared to traditional SVMs with floating-
point weights. Given a trained SVM, we showed how to deploy them using GQC while
preserving their theoretical properties.

Concerning the second question, we showed how to improve both GQC and QA using
classical techniques: In Chapter 5 we used a custom evolution-based optimization routine
to “grow” quantum circuits for optimizing given problem Hamiltonians. This lead to
smaller, more intelligent circuit designs that are adapted to the specific quantum hardware
and its noise characteristics. In Chapter 6 we identified DR as an important factor for the
error-proneness of quantum annealers, and introduced algorithms to reduce it, exploiting
theoretical bounds on the minimal energy. We showed empirically that, after applying our
DR reduction method, QA showed improved performance by finding the global minimizer
of QuBo instances more realiably.

Finally, we explored three practical applications of QC to quite different problems. By
utilizing a variety of techniques we apply NISQ-style QC more efficiently. In Chapter 7,
we solve the problem of placing light sources resource-efficiently using QA as a compo-
nent within an ADMM optimization loop. Along the way we discovered an unintuitive
connection to the SETCOVER problem, to which our method is also applicable. Chapter 8
uses another Quso formulation to solve Sudoku puzzles: Here, we use clamping to sig-
nificantly reduce the problem size instead of resorting to penalty weights, both saving on
quantum resources and reducing DR along the way. Finally, in Chapter 9 we apply our
RQSVM devised in Section 4.2 to a real-world data set containing milling process data.
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Using a domain-specific feature map, we demonstrate that GQC can be used for accurately
predicting the stability limit, facilitating high-quality results in machining.

The main results of this thesis rest on sound theoretical foundations, which helps to pave
the road leading out of the NISQ era: Owing to the limitations of contemporary quantum
hardware, such as small number of qubits, shallow circuit depths, limited entanglement
capability, decoherence and gate noise, not all of the methods presented here could be
tested and applied on real devices as thoroughly as we would have liked. The scale of
problems to which we were able to apply physical QC seems, at times, underwhelming
compared to the massive achievements currently seen in areas like computer vision and
natural language processing. However, this thesis explores a still quite novel computing
paradigm, whose true potential has not yet unfolded and may eventually be applicable at
state-of-the-art scales.

The practical implications of noise-free, large-scale QC are enormous, as it allows for
asymptotic speedups in core components of many algorithms, as well as efficient ana-
log solving of NP-hard optimization problems like QuBo. The advancements presented
in this thesis would be immediately usable with such future hardware and lead to more
efficient optimization and ML routines, making a contribution to a transformed ML land-
scape.

During the course of this thesis, numerous unanswered questions have arisen which leave
room for future work. Some of these questions have already been discussed in the closing
remarks of each separate chapter, and only the most intriguing questions shall be reiter-
ated here. In Section 4.2 we have seen that the ROSVM circuit computes an inner product
that is used for the model prediction. Instead of embedding the data into the circuit as-
is, we could think about strategies to construct quantum feature maps that transform
the data before computing the inner product, which could potentially lead to richer data
representations and better model performance.

Concerning quantum circuit evolution, a natural future direction is to further investi-
gate the potential of different basis gate sets and their effectiveness in an evolutionary
optimization setting. Quantum gate computers have native gate sets, as well as a re-
stricted qubit topology that allows for two-qubit gates only between certain pairs. In-
cluding these constraints into the evolutionary operators seems to be a natural extension
to our method, and would make the resulting circuits even better adapted to the NISQ
hardware at hand.

Another very intriguing future research direction is gaining more theoretical insights
into QuBo problems @ and their corresponding minimizing sets S*(Q). The relation
= defined in Def. 2.7 induces equivalence classes on Q,, for any n € N, meaning there
is a necessarily finite number of QUBO instances with distinct minimizers. This implies
further that each class contains one member whose DR is minimal (or whose minimal
energy gap is maximal), which would be the ideal QuUBo instance to solve on quantum
annealers. Finding these natural representatives for each minimizing set is a fascinating
research endeavor, which could potentially grant deeper insights into the subject of DR
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reduction of QuBo instances. Our method presented in Chapter 6 has the flaw of being
iterative, changing only one parameter at a time. Finding the matrix A in Eq. (6.3) directly
(or, at least, in fewer steps) would lead to much more efficient DR reduction. However, it
is currently unknown how to maintain the C relation while modifying the entire matrix
at once.

Concerning our application of the RQSVM to the machining data, it would be interesting
to connect theoretical knowledge about the stability behavior of milling processes with
a quantum feature map. So far, we have seen that we can define a feature map based on
sine waves to approximate the lobes of stability occuring in the empirical data. However,
there could be a quantum feature map that captures the behavior more faithfully. This
research direction intersects our proposed extension of the RQSVM model mentioned
above, potentially leading to more expressive QML models with theoretical properties
carried over from their classical counterparts.

Quantum Computing is still in its infancy, and its full-scale practical applicability may
still be several decades away. To ensure that any work on it done today still has value in
the future, it has to rest on theoretical groundwork, not chase after state-of-the-art perfor-
mances using poorly-understood heuristics. This thesis has added a few items to the list
of meaningful things to do with QC, and taken a step towards better quantum-classical
optimization and ML. Yet there is still much fundamental knowledge to be discovered and
connections to be made.
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